On the minor characteristics of orthogonal integer lattices
Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 4, pp. 25-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the basic matrices of orthogonal integer lattices have the same set of elementary divisors. Bibl. 8.
Keywords: integer lattice, Smith normal form.
@article{DA_2008_15_4_a1,
     author = {S. I. Veselov and V. N. Shevchenko},
     title = {On the minor characteristics of orthogonal integer lattices},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {25--29},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2008_15_4_a1/}
}
TY  - JOUR
AU  - S. I. Veselov
AU  - V. N. Shevchenko
TI  - On the minor characteristics of orthogonal integer lattices
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2008
SP  - 25
EP  - 29
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2008_15_4_a1/
LA  - ru
ID  - DA_2008_15_4_a1
ER  - 
%0 Journal Article
%A S. I. Veselov
%A V. N. Shevchenko
%T On the minor characteristics of orthogonal integer lattices
%J Diskretnyj analiz i issledovanie operacij
%D 2008
%P 25-29
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2008_15_4_a1/
%G ru
%F DA_2008_15_4_a1
S. I. Veselov; V. N. Shevchenko. On the minor characteristics of orthogonal integer lattices. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 4, pp. 25-29. http://geodesic.mathdoc.fr/item/DA_2008_15_4_a1/

[1] Veselov S. I., “Dokazatelstvo obobscheniya gipotezy Borosha–Treibiga o diofantovykh uravneniyakh”, Diskretn. analiz i issled. operatsii. Ser. 1, 8:1 (2001), 17–22 | MR | Zbl

[2] Veselov S. I., Chirkov A. Yu., “Otsenki chisla vershin tselykh poliedrov”, Diskretn. analiz i issled. operatsii. Cer. 2, 14:2 (2007), 14–31

[3] Veselov S. I., Shevchenko V. N., “Otsenki minimalnogo rasstoyaniya mezhdu tochkami nekotorykh tselochislennykh reshëtok”, Kombinatorno-algebraicheskie metody v prikladnoi matematike, Gorkovskii gos. un-t, Gorkii, 1980, 26–33 | MR | Zbl

[4] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988, 552 pp. | MR | Zbl

[5] Skhreiver A., Teoriya lineinogo i tselochislennogo programmirovaniya, T. 2, Mir, M., 1991, 342 pp.

[6] Shevchenko V. N., Kachestvennye voprosy tselochislennogo programmirovaniya, Fizmatlit, M., 1995, 192 pp. | MR | Zbl

[7] Shevchenko V. N., “Mnogogranniki mnogoindeksnykh transportnykh zadach: algebraicheskii podkhod”, Rossiiskaya konferentsiya “Diskretnaya optimizatsiya i issledovanie operatsii”, Materialy konf. (DAOR' 04), Izd-vo In-ta matematiki, Novosibirsk, 2004, 64–69

[8] Nguyen P., Stern J., “Merkle–Hellman revisited: a cryptanalysis of the Qu-Vanstone cryptosystem based on group factorizations”, Advances in cryptology – CRYPTO' 97 (Santa Barbara, CA, 1997), Lect. Notes Comp. Sci., 1294, Springer-Verl., Berlin, 1997, 198–212 | MR | Zbl