Variable neighborhood search for two-stage facility location problem
Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 3, pp. 43-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a heuristic algorithm of variable neighborhood search (VNS) is developed for solving two-stage facility location problem. In the VNS framework, a suitable set of neighborhoods and the order of their exploration are proposed. Besides the well-known neighborhoods, a new type of neighborhood is used. Computational experiments on benchmark instances show that in most testing instances the method gives better solutions than the simulated annealing algorithm. Tabl. 5, illustr. 3, bibl. 19.
Keywords: discrete optimization, two-stage facility location problem, variable neighborhood search.
@article{DA_2008_15_3_a4,
     author = {T. V. Levanova and A. S. Fedorenko},
     title = {Variable neighborhood search for two-stage facility location problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {43--57},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2008_15_3_a4/}
}
TY  - JOUR
AU  - T. V. Levanova
AU  - A. S. Fedorenko
TI  - Variable neighborhood search for two-stage facility location problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2008
SP  - 43
EP  - 57
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2008_15_3_a4/
LA  - ru
ID  - DA_2008_15_3_a4
ER  - 
%0 Journal Article
%A T. V. Levanova
%A A. S. Fedorenko
%T Variable neighborhood search for two-stage facility location problem
%J Diskretnyj analiz i issledovanie operacij
%D 2008
%P 43-57
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2008_15_3_a4/
%G ru
%F DA_2008_15_3_a4
T. V. Levanova; A. S. Fedorenko. Variable neighborhood search for two-stage facility location problem. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 3, pp. 43-57. http://geodesic.mathdoc.fr/item/DA_2008_15_3_a4/

[1] Beresnev V. L., Diskretnye zadachi razmescheniya i polinomy ot bulevykh peremennykh, Izd-vo In-ta matematiki, Novosibirsk, 2005, 408 pp.

[2] Beresnev V. L., Gimadi E. Kh., Dementev V. T., Ekstremalnye zadachi standartizatsii, Nauka, Novosibirsk, 1978, 335 pp. | MR

[3] Goncharov E. N., Kochetov Yu. A., “Povedenie veroyatnostnykh zhadnykh algoritmov dlya mnogostadiinoi zadachi razmescheniya”, Diskret. analiz i issled. operatsii. Ser. 2, 6:1 (1999), 12–32 | MR | Zbl

[4] Kolokolov A. A., Levanova T. V., Loresh M. A., “Algoritmy muravinoi kolonii dlya zadach optimalnogo razmescheniya predpriyatii”, Omskii nauch. vestn., 2006, no. 4(38), 62–67

[5] Kochetov Yu. A., “Veroyatnostnye metody lokalnogo poiska dlya zadach diskretnoi optimizatsii”, Diskretnaya matematika i ee prilozheniya, Sbornik lektsii molodezhnykh nauchnykh shkol po diskretnoi matematike i ee prilozheniyam, MGU, M., 2001, 84–117

[6] Kochetov Yu. A., Mladenovich N., Khansen P., “Lokalnyi poisk s chereduyuschimisya okrestnostyami”, Diskret. analiz i issled. operatsii. Ser. 2, 10:1 (2003), 11–35 | MR | Zbl

[7] Kuzyurin N. N., “Veroyatnostnye priblizhennye algoritmy v diskretnoi optimizatsii”, Diskret. analiz i issled. operatsii. Ser. 2, 9:2 (2002), 97–114 | MR | Zbl

[8] Levanova T. V., Loresh M. A., “Algoritmy muravinoi kolonii i imitatsii otzhiga dlya zadachi o $p$-mediane”, Avtomatika i telemekhanika, 2004, no. 3, 80–88 | Zbl

[9] Dréo J., Pétrowski A., Siarry P., Taillard E., Mètaheuristiques pour l'optimisation difficile, Springer–Verl., Paris, 2006, 369 pp.

[10] Johnson D. S., Aragon C. R., McGeoch L. A., Schevon C., “Optimization by simulated annealing: an experimental evaluation; Part II, Graph coloring and number partitioning”, European J. Oper. Res., 39 (1991), 378–407

[11] Hansen P., Mladenović N., “Variable neighborhood search”, Handbook of Metaheuristics, Kluwer Acad. Publ., Chichester, 2003, 145–184 | MR | Zbl

[12] Kirkpatrick S., Gellat C. D., Vecchi M. P., “Optimization by simulated annealing”, Science, 220 (1983), 671–680 | DOI | MR

[13] Krarup J., Pruzan P., “The simple plant location problem: survey and synthesis”, European J. Oper. Res., 12:1 (1983), 36–81 | DOI | MR | Zbl

[14] E. Aarts, J. K. Lenstram (eds.), Local search in Combinatorial optimization, John Wiley Sons, New York, 1997 | MR

[15] Lundy M., Meez A., “Convergence of an annealing algorithm”, Math. Progr., 34 (1986), 111–124 | DOI | MR | Zbl

[16] Mladenović N., Hansen P., “Variable neighborhood search”, Computers Oper. Res., 24 (1997), 1097–1100 | DOI | MR | Zbl

[17] Proceedings of the 18th Mini Euro Conference on Variable Neighborhood Search, Puerto de la Cruz, Tenerife, Spain, 23.11.2005–25.11.2005, ISBN: 84-689-5679-1

[18] Reeves C., Modern heuristic techniques for combinatorial problems, John Wiley Sons, New York, 1993, 320 pp. | MR

[19] Diskretnye zadachi razmescheniya, www.math.nsc.ru/AP/benchmarks/