Nash equilibrium in transport model with quadratic costs
Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 3, pp. 31-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the problem of coordinating the plans on conveyance of several clients by a single transport system at the conveyance tariffs of the separate arcs that are linearly dependent on the total conveyance volumes at these arcs. In this case the conveyance costs at separate arcs for every client are quadratic functions of this client conveyance volume when other clients conveyance volumes are fixed. The existence and uniqueness of the Nash equilibrium are proved. It is shown that the problem of finding a Nash equilibrium for concerned nonlinear transport problem leads to solving a quadratic programming problem. Bibl. 5.
Keywords: nonlinear transport model, Nash equilibrium.
@article{DA_2008_15_3_a3,
     author = {V. I. Zorkal'tsev and M. A. Kiseleva},
     title = {Nash equilibrium in transport model with quadratic costs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {31--42},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2008_15_3_a3/}
}
TY  - JOUR
AU  - V. I. Zorkal'tsev
AU  - M. A. Kiseleva
TI  - Nash equilibrium in transport model with quadratic costs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2008
SP  - 31
EP  - 42
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2008_15_3_a3/
LA  - ru
ID  - DA_2008_15_3_a3
ER  - 
%0 Journal Article
%A V. I. Zorkal'tsev
%A M. A. Kiseleva
%T Nash equilibrium in transport model with quadratic costs
%J Diskretnyj analiz i issledovanie operacij
%D 2008
%P 31-42
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2008_15_3_a3/
%G ru
%F DA_2008_15_3_a3
V. I. Zorkal'tsev; M. A. Kiseleva. Nash equilibrium in transport model with quadratic costs. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 3, pp. 31-42. http://geodesic.mathdoc.fr/item/DA_2008_15_3_a3/

[1] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988, 552 pp. | MR | Zbl

[2] Geil D., Teoriya lineinykh ekonomicheskikh modelei, Izd-vo inostr. lit., M., 1963, 418 pp.

[3] Zorkaltsev V. I., Kiseleva M. A., Sistemy lineinykh neravenstv, Uchebnoe posobie, Izd-vo Irkutsk. gos. un-ta, Irkutsk, 2007, 127 pp.

[4] Zorkaltsev V. I., Kiseleva M. A., “Ravnovesie Nesha v nelineinoi transportnoi modeli”, Optimizatsiya, upravlenie, intellekt, 2007, no. 1(13), 33–41

[5] Polak E., Chislennye metody optimizatsii. Edinyi podkhod, Mir, M., 1974, 376 pp. | MR | Zbl