@article{DA_2008_15_1_a0,
author = {V. E. Alekseev and D. S. Malyshev},
title = {{\CYRK}{\cyrl}{\cyra}{\cyrs}{\cyrs}{\cyrery} {\cyrp}{\cyrl}{\cyra}{\cyrn}{\cyra}{\cyrr}{\cyrn}{\cyrery}{\cyrh} {\cyrg}{\cyrr}{\cyra}{\cyrf}{\cyro}{\cyrv} {\cyrs}~{\cyrp}{\cyro}{\cyrl}{\cyri}{\cyrn}{\cyro}{\cyrm}{\cyri}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyro} {\cyrr}{\cyra}{\cyrz}{\cyrr}{\cyre}{\cyrsh}{\cyri}{\cyrm}{\cyro}{\cyrishrt} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyre}{\cyrishrt} {\cyro}~{\cyrn}{\cyre}{\cyrz}{\cyra}{\cyrv}{\cyri}{\cyrs}{\cyri}{\cyrm}{\cyro}{\cyrm} {\cyrm}{\cyrn}{\cyro}{\cyrzh}{\cyre}{\cyrs}{\cyrt}{\cyrv}{\cyre}},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {3--10},
year = {2008},
volume = {15},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2008_15_1_a0/}
}
TY - JOUR AU - V. E. Alekseev AU - D. S. Malyshev TI - Классы планарных графов с полиномиально разрешимой задачей о независимом множестве JO - Diskretnyj analiz i issledovanie operacij PY - 2008 SP - 3 EP - 10 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/item/DA_2008_15_1_a0/ LA - ru ID - DA_2008_15_1_a0 ER -
V. E. Alekseev; D. S. Malyshev. Классы планарных графов с полиномиально разрешимой задачей о независимом множестве. Diskretnyj analiz i issledovanie operacij, Tome 15 (2008) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/DA_2008_15_1_a0/
[1] Alekseev V. E., “O szhimaemykh grafakh”, Problemy kibernetiki, Vyp. 36, Nauka, M., 1979, 23–31 | MR
[2] Alekseev V. E., “O vliyanii lokalnykh ogranichenii na slozhnost opredeleniya chisla nezavisimosti grafa”, Kombinatorno-algebraicheskie metody v prikladnoi matematike, Gorkovskii gos. un-t, Gorkii, 1983, 3–13 | MR
[3] Alekseev V. E., “On easy and hard hereditary classes of graphs with respect to the independent set problem”, Discrete Applied Math., 132:1–3 (2004), 17–26 | DOI | MR
[4] Bodlaender H. L., “Dynamic programming on graphs with bounded treewidth”, Automata, languages and programming, Proc. (Tampere, 1988), Lecture Notes in Comput. Sci., 317, Springer, Berlin, 1988, 105–118 | MR
[5] Lozin V., Milanic M., “A polynomial algorithm to find an independent set of maximum weight in fork-free graphs”, Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms
[6] Robertson N., Seymour P., “Graph minors. III. Planar tree-width”, J. Combin. Theory. Ser. B, 36:1 (1984), 49–64 | DOI | MR | Zbl