Improved bounds on number fields of small degree
Discrete analysis (2024) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We study the number of degree $n$ number fields with discriminant bounded by $X$. In this article, we improve an upper bound due to Schmidt on the number of such fields that was previously the best known upper bound for $6 \leq n \leq 94$.
Publié le :
@article{DAS_2024_a2,
     author = {Theresa C. Anderson and Ayla Gafni and Kevin Hughes and Robert J. Lemke Oliver and David Lowry-Duda and Frank Thorne and Jiuya Wang and Ruixiang Zhang},
     title = {Improved bounds on number fields of small degree},
     journal = {Discrete analysis},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2024_a2/}
}
TY  - JOUR
AU  - Theresa C. Anderson
AU  - Ayla Gafni
AU  - Kevin Hughes
AU  - Robert J. Lemke Oliver
AU  - David Lowry-Duda
AU  - Frank Thorne
AU  - Jiuya Wang
AU  - Ruixiang Zhang
TI  - Improved bounds on number fields of small degree
JO  - Discrete analysis
PY  - 2024
UR  - http://geodesic.mathdoc.fr/item/DAS_2024_a2/
LA  - en
ID  - DAS_2024_a2
ER  - 
%0 Journal Article
%A Theresa C. Anderson
%A Ayla Gafni
%A Kevin Hughes
%A Robert J. Lemke Oliver
%A David Lowry-Duda
%A Frank Thorne
%A Jiuya Wang
%A Ruixiang Zhang
%T Improved bounds on number fields of small degree
%J Discrete analysis
%D 2024
%U http://geodesic.mathdoc.fr/item/DAS_2024_a2/
%G en
%F DAS_2024_a2
Theresa C. Anderson; Ayla Gafni; Kevin Hughes; Robert J. Lemke Oliver; David Lowry-Duda; Frank Thorne; Jiuya Wang; Ruixiang Zhang. Improved bounds on number fields of small degree. Discrete analysis (2024). http://geodesic.mathdoc.fr/item/DAS_2024_a2/