Improved bounds on number fields of small degree
Discrete analysis (2024)
Cet article a éte moissonné depuis la source Scholastica
We study the number of degree $n$ number fields with discriminant bounded by $X$. In this article, we improve an upper bound due to Schmidt on the number of such fields that was previously the best known upper bound for $6 \leq n \leq 94$.
@article{DAS_2024_a2,
author = {Theresa C. Anderson and Ayla Gafni and Kevin Hughes and Robert J. Lemke Oliver and David Lowry-Duda and Frank Thorne and Jiuya Wang and Ruixiang Zhang},
title = {Improved bounds on number fields of small degree},
journal = {Discrete analysis},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2024_a2/}
}
TY - JOUR AU - Theresa C. Anderson AU - Ayla Gafni AU - Kevin Hughes AU - Robert J. Lemke Oliver AU - David Lowry-Duda AU - Frank Thorne AU - Jiuya Wang AU - Ruixiang Zhang TI - Improved bounds on number fields of small degree JO - Discrete analysis PY - 2024 UR - http://geodesic.mathdoc.fr/item/DAS_2024_a2/ LA - en ID - DAS_2024_a2 ER -
%0 Journal Article %A Theresa C. Anderson %A Ayla Gafni %A Kevin Hughes %A Robert J. Lemke Oliver %A David Lowry-Duda %A Frank Thorne %A Jiuya Wang %A Ruixiang Zhang %T Improved bounds on number fields of small degree %J Discrete analysis %D 2024 %U http://geodesic.mathdoc.fr/item/DAS_2024_a2/ %G en %F DAS_2024_a2
Theresa C. Anderson; Ayla Gafni; Kevin Hughes; Robert J. Lemke Oliver; David Lowry-Duda; Frank Thorne; Jiuya Wang; Ruixiang Zhang. Improved bounds on number fields of small degree. Discrete analysis (2024). http://geodesic.mathdoc.fr/item/DAS_2024_a2/