The KKL inequality and Rademacher type 2
Discrete analysis (2024) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We show that a vector-valued Kahn--Kalai--Linial inequality holds in every Banach space of Rademacher type 2. We also show that for any nondecreasing function $h\geq 0$ with $0\int_{1}^{\infty}\frac{h(t)}{t^{2}}\mathrm{dt}\infty$ we have the inequality \begin{align*} \|f - \mathbb{E}f\|_2 \leq 12 \, T_{2}(X) \left(\int_{1}^{\infty}\frac{h(t)}{t^{2}} \mathrm{dt} \right)^{1/2} \, \left(\sum_{j=1}^n \frac{\|D_j f\|^{2}_2}{h\left( \log \frac{\|D_j f\|_2}{\|D_j f\|_1} \right)}\right)^{1/2} \end{align*} for all $f :\{-1,1\}^{n} \to X$ and all $n\geq 1$, where $X$ is a normed space and $T_{2}(X)$ is the associated type 2 constant.
Publié le :
@article{DAS_2024_a19,
     author = {Paata Ivanisvili and Yonathan Stone},
     title = {The {KKL} inequality and {Rademacher} type 2},
     journal = {Discrete analysis},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2024_a19/}
}
TY  - JOUR
AU  - Paata Ivanisvili
AU  - Yonathan Stone
TI  - The KKL inequality and Rademacher type 2
JO  - Discrete analysis
PY  - 2024
UR  - http://geodesic.mathdoc.fr/item/DAS_2024_a19/
LA  - en
ID  - DAS_2024_a19
ER  - 
%0 Journal Article
%A Paata Ivanisvili
%A Yonathan Stone
%T The KKL inequality and Rademacher type 2
%J Discrete analysis
%D 2024
%U http://geodesic.mathdoc.fr/item/DAS_2024_a19/
%G en
%F DAS_2024_a19
Paata Ivanisvili; Yonathan Stone. The KKL inequality and Rademacher type 2. Discrete analysis (2024). http://geodesic.mathdoc.fr/item/DAS_2024_a19/