A Quantitative Bound For Szemerédi's Theorem for a Complexity One Polynomial Progression over $\mathbb{Z}/N\mathbb{Z}$
Discrete analysis (2024)
Cet article a éte moissonné depuis la source Scholastica
Let $N$ be a large prime and $P, Q \in \mathbb{Z}[x]$ two linearly independent polynomials with $P(0) = Q(0) = 0$. We show that if a subset $A$ of $\mathbb{Z}/N\mathbb{Z}$ lacks a progression of the form $(x, x + P(y), x + Q(y), x + P(y) + Q(y))$, then $$|A| \le O\left(\frac{N}{\log_{(O(1))}(N)}\right)$$ where $\log_{C}(N)$ is an iterated logarithm of order $C$ (e.g., $\log_{2}(N) = \log\log(N)$). To establish this bound, we adapt Peluse's (2018) degree lowering argument to the quadratic Fourier analysis setting to obtain quantitative bounds on the true complexity of the above progression. Our method also shows that for a large class of polynomial progressions, if one can establish polynomial-type bounds on the true complexity of those progressions, then one can establish polynomial-type bounds on Szemerédi's theorem for that type of polynomial progression.
@article{DAS_2024_a18,
author = {James Leng},
title = {A {Quantitative} {Bound} {For} {Szemer\'edi's} {Theorem} for a {Complexity} {One} {Polynomial} {Progression} over $\mathbb{Z}/N\mathbb{Z}$},
journal = {Discrete analysis},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2024_a18/}
}
James Leng. A Quantitative Bound For Szemerédi's Theorem for a Complexity One Polynomial Progression over $\mathbb{Z}/N\mathbb{Z}$. Discrete analysis (2024). http://geodesic.mathdoc.fr/item/DAS_2024_a18/