A Quantitative Bound For Szemerédi's Theorem for a Complexity One Polynomial Progression over $\mathbb{Z}/N\mathbb{Z}$
Discrete analysis (2024) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

Let $N$ be a large prime and $P, Q \in \mathbb{Z}[x]$ two linearly independent polynomials with $P(0) = Q(0) = 0$. We show that if a subset $A$ of $\mathbb{Z}/N\mathbb{Z}$ lacks a progression of the form $(x, x + P(y), x + Q(y), x + P(y) + Q(y))$, then $$|A| \le O\left(\frac{N}{\log_{(O(1))}(N)}\right)$$ where $\log_{C}(N)$ is an iterated logarithm of order $C$ (e.g., $\log_{2}(N) = \log\log(N)$). To establish this bound, we adapt Peluse's (2018) degree lowering argument to the quadratic Fourier analysis setting to obtain quantitative bounds on the true complexity of the above progression. Our method also shows that for a large class of polynomial progressions, if one can establish polynomial-type bounds on the true complexity of those progressions, then one can establish polynomial-type bounds on Szemerédi's theorem for that type of polynomial progression.
Publié le :
@article{DAS_2024_a18,
     author = {James Leng},
     title = {A {Quantitative} {Bound} {For} {Szemer\'edi's} {Theorem} for a {Complexity} {One} {Polynomial} {Progression} over $\mathbb{Z}/N\mathbb{Z}$},
     journal = {Discrete analysis},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2024_a18/}
}
TY  - JOUR
AU  - James Leng
TI  - A Quantitative Bound For Szemerédi's Theorem for a Complexity One Polynomial Progression over $\mathbb{Z}/N\mathbb{Z}$
JO  - Discrete analysis
PY  - 2024
UR  - http://geodesic.mathdoc.fr/item/DAS_2024_a18/
LA  - en
ID  - DAS_2024_a18
ER  - 
%0 Journal Article
%A James Leng
%T A Quantitative Bound For Szemerédi's Theorem for a Complexity One Polynomial Progression over $\mathbb{Z}/N\mathbb{Z}$
%J Discrete analysis
%D 2024
%U http://geodesic.mathdoc.fr/item/DAS_2024_a18/
%G en
%F DAS_2024_a18
James Leng. A Quantitative Bound For Szemerédi's Theorem for a Complexity One Polynomial Progression over $\mathbb{Z}/N\mathbb{Z}$. Discrete analysis (2024). http://geodesic.mathdoc.fr/item/DAS_2024_a18/