Monochromatic Sums and Products of Polynomials
Discrete analysis (2024) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We show that the pattern $\{x,x+y,xy\}$ is partition regular over the space of formal integer polynomials of degree at least one with zero constant term, with primitive recursive bounds. This provides a new proof for the partition regularity of $\{x,x+y,xy\}$ over $\mathbb{N}$, which gives the first primitive recursive bound.
Publié le :
@article{DAS_2024_a16,
     author = {Ryan Alweiss},
     title = {Monochromatic {Sums} and {Products} of {Polynomials}},
     journal = {Discrete analysis},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2024_a16/}
}
TY  - JOUR
AU  - Ryan Alweiss
TI  - Monochromatic Sums and Products of Polynomials
JO  - Discrete analysis
PY  - 2024
UR  - http://geodesic.mathdoc.fr/item/DAS_2024_a16/
LA  - en
ID  - DAS_2024_a16
ER  - 
%0 Journal Article
%A Ryan Alweiss
%T Monochromatic Sums and Products of Polynomials
%J Discrete analysis
%D 2024
%U http://geodesic.mathdoc.fr/item/DAS_2024_a16/
%G en
%F DAS_2024_a16
Ryan Alweiss. Monochromatic Sums and Products of Polynomials. Discrete analysis (2024). http://geodesic.mathdoc.fr/item/DAS_2024_a16/