Boolean Functions with Small Approximate Spectral Norm
Discrete analysis (2024)
Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

The sum of the absolute values of the Fourier coefficients of a function $f:\mathbb{F}_2^n \to \mathbb{R}$ is called the spectral norm of $f$. Green and Sanders' quantitative version of Cohen's idempotent theorem states that if the spectral norm of $f:\mathbb{F}_2^n \to \{0,1\}$ is at most $M$, then the support of $f$ belongs to the ring of sets generated by at most $\ell(M)$ cosets, where $\ell(M)$ is a constant that only depends on $M$. We prove that the above statement can be generalized to \emph{approximate} spectral norms if and only if the support of $f$ and its complement satisfy a certain arithmetic connectivity condition. In particular, our theorem provides a new proof of the quantitative Cohen's theorem for $\mathbb{F}_2^n$.
Publié le :
@article{DAS_2024_a15,
     author = {Tsun-Ming Cheung and Hamed Hatami and Rosie Zhao and Itai Zilberstein},
     title = {Boolean {Functions} with {Small} {Approximate} {Spectral} {Norm}},
     journal = {Discrete analysis},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2024_a15/}
}
TY  - JOUR
AU  - Tsun-Ming Cheung
AU  - Hamed Hatami
AU  - Rosie Zhao
AU  - Itai Zilberstein
TI  - Boolean Functions with Small Approximate Spectral Norm
JO  - Discrete analysis
PY  - 2024
UR  - http://geodesic.mathdoc.fr/item/DAS_2024_a15/
LA  - en
ID  - DAS_2024_a15
ER  - 
%0 Journal Article
%A Tsun-Ming Cheung
%A Hamed Hatami
%A Rosie Zhao
%A Itai Zilberstein
%T Boolean Functions with Small Approximate Spectral Norm
%J Discrete analysis
%D 2024
%U http://geodesic.mathdoc.fr/item/DAS_2024_a15/
%G en
%F DAS_2024_a15
Tsun-Ming Cheung; Hamed Hatami; Rosie Zhao; Itai Zilberstein. Boolean Functions with Small Approximate Spectral Norm. Discrete analysis (2024). http://geodesic.mathdoc.fr/item/DAS_2024_a15/