Six Permutation Patterns Force Quasirandomness
Discrete analysis (2024) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

A sequence $π_1,π_2,\dots$ of permutations is said to be "quasirandom" if the induced density of every permutation $σ$ in $π_n$ converges to $1/|σ|!$ as $n\to\infty$. We prove that $π_1,π_2,\dots$ is quasirandom if and only if the density of each permutation $σ$ in the set $$\{123,321,2143,3412,2413,3142\}$$ converges to $1/|σ|!$. Previously, the smallest cardinality of a set with this property, called a "quasirandom-forcing" set, was known to be between four and eight. In fact, we show that there is a single linear expression of the densities of the six permutations in this set which forces quasirandomness and show that this is best possible in the sense that there is no shorter linear expression of permutation densities with positive coefficients with this property. In the language of theoretical statistics, this expression provides a new nonparametric independence test for bivariate continuous distributions related to Spearman's $ρ$.
Publié le :
@article{DAS_2024_a13,
     author = {Gabriel Crudele and Peter Dukes and Jonathan A. Noel},
     title = {Six {Permutation} {Patterns} {Force} {Quasirandomness}},
     journal = {Discrete analysis},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2024_a13/}
}
TY  - JOUR
AU  - Gabriel Crudele
AU  - Peter Dukes
AU  - Jonathan A. Noel
TI  - Six Permutation Patterns Force Quasirandomness
JO  - Discrete analysis
PY  - 2024
UR  - http://geodesic.mathdoc.fr/item/DAS_2024_a13/
LA  - en
ID  - DAS_2024_a13
ER  - 
%0 Journal Article
%A Gabriel Crudele
%A Peter Dukes
%A Jonathan A. Noel
%T Six Permutation Patterns Force Quasirandomness
%J Discrete analysis
%D 2024
%U http://geodesic.mathdoc.fr/item/DAS_2024_a13/
%G en
%F DAS_2024_a13
Gabriel Crudele; Peter Dukes; Jonathan A. Noel. Six Permutation Patterns Force Quasirandomness. Discrete analysis (2024). http://geodesic.mathdoc.fr/item/DAS_2024_a13/