Around Furstenberg's times $p$, times $q$ conjecture: times $p$-invariant measures with some large Fourier coefficients
Discrete analysis (2024) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

For each integer $n\ge 1$, denote by $T_{n}$ the map $x\mapsto nx\mod 1$ from the circle group $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ into itself. Let $p,q\ge 2$ be two multiplicatively independent integers. Using Baire Category arguments, we show that generically a $T_{p}$-invariant probability measure $μ$ on $\mathbb{T}$ with no atom has some large Fourier coefficients along the sequence $(q^n)_{n\ge 0}$. In particular, $(T_{q^{n}}μ)_{n\ge 0}$ does not converges weak-star to the normalised Lebesgue measure on $\mathbb{T}$. This disproves a conjecture of Furstenberg and complements previous results of Johnson and Rudolph. In the spirit of previous work by Meiri and Lindenstrauss-Meiri-Peres, we study generalisations of our main result to certain classes of sequences $(c_n)_{n\ge 0}$ other than the sequences $(q^{n})_{n\ge 0}$, and also investigate the multidimensional setting.
Publié le :
@article{DAS_2024_a11,
     author = {Catalin Badea and Sophie Grivaux},
     title = {Around {Furstenberg's} times $p$, times $q$ conjecture: times $p$-invariant measures with some large {Fourier} coefficients},
     journal = {Discrete analysis},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2024_a11/}
}
TY  - JOUR
AU  - Catalin Badea
AU  - Sophie Grivaux
TI  - Around Furstenberg's times $p$, times $q$ conjecture: times $p$-invariant measures with some large Fourier coefficients
JO  - Discrete analysis
PY  - 2024
UR  - http://geodesic.mathdoc.fr/item/DAS_2024_a11/
LA  - en
ID  - DAS_2024_a11
ER  - 
%0 Journal Article
%A Catalin Badea
%A Sophie Grivaux
%T Around Furstenberg's times $p$, times $q$ conjecture: times $p$-invariant measures with some large Fourier coefficients
%J Discrete analysis
%D 2024
%U http://geodesic.mathdoc.fr/item/DAS_2024_a11/
%G en
%F DAS_2024_a11
Catalin Badea; Sophie Grivaux. Around Furstenberg's times $p$, times $q$ conjecture: times $p$-invariant measures with some large Fourier coefficients. Discrete analysis (2024). http://geodesic.mathdoc.fr/item/DAS_2024_a11/