Additive energies on discrete cubes
Discrete analysis (2023) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We prove that for $d\geq 0$ and $k\geq 2$, for any subset $A$ of a discrete cube $\{0,1\}^d$, the $k-$higher energy of $A$ (the number of $2k-$tuples $(a_1,a_2,\dots,a_{2k})$ in $A^{2k}$ with $a_1-a_2=a_3-a_4=\dots=a_{2k-1}-a_{2k}$) is at most $|A|^{\log_{2}(2^k+2)}$, and $\log_{2}(2^k+2)$ is the best possible exponent. We also show that if $d\geq 0$ and $2\leq k\leq 10$, for any subset $A$ of a discrete cube $\{0,1\}^d$, the $k-$additive energy of $A$ (the number of $2k-$tuples $(a_1,a_2,\dots,a_{2k})$ in $A^{2k}$ with $a_1+a_2+\dots+a_k=a_{k+1}+a_{k+2}+\dots+a_{2k}$) is at most $|A|^{\log_2{ \binom{2k}{k}}}$, and $\log_2{ \binom{2k}{k}}$ is the best possible exponent. We discuss the analogous problems for the sets $\{0,1,\dots,n\}^d$ for $n\geq 2$.
Publié le :
@article{DAS_2023_a9,
     author = {Jaume de Dios Pont and Rachel Greenfeld and Paata Ivanisvili and Jos\'e Madrid},
     title = {Additive energies on discrete cubes},
     journal = {Discrete analysis},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2023_a9/}
}
TY  - JOUR
AU  - Jaume de Dios Pont
AU  - Rachel Greenfeld
AU  - Paata Ivanisvili
AU  - José Madrid
TI  - Additive energies on discrete cubes
JO  - Discrete analysis
PY  - 2023
UR  - http://geodesic.mathdoc.fr/item/DAS_2023_a9/
LA  - en
ID  - DAS_2023_a9
ER  - 
%0 Journal Article
%A Jaume de Dios Pont
%A Rachel Greenfeld
%A Paata Ivanisvili
%A José Madrid
%T Additive energies on discrete cubes
%J Discrete analysis
%D 2023
%U http://geodesic.mathdoc.fr/item/DAS_2023_a9/
%G en
%F DAS_2023_a9
Jaume de Dios Pont; Rachel Greenfeld; Paata Ivanisvili; José Madrid. Additive energies on discrete cubes. Discrete analysis (2023). http://geodesic.mathdoc.fr/item/DAS_2023_a9/