Quasirandom groups enjoy interleaved mixing
Discrete analysis (2023) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

Let $G$ be a group such that any non-trivial representation has dimension at least $d$. Let $X=(X_{1},X_{2},\ldots,X_{t})$ and $Y=(Y_{1},Y_{2},\ldots,Y_{t})$ be distributions over $G^{t}$. Suppose that $X$ is independent from $Y$. We show that for any $g\in G$ we have $|\mathbb{P}[X_{1}Y_{1}X_{2}Y_{2}\cdots X_{t}Y_{t}=g]-1/|G||\le\frac{|G|^{2t-1}}{d^{t-1}}\sqrt{\mathbb{E}_{h\in G^{t}}X(h)^{2}}\sqrt{\mathbb{E}_{h\in G^{t}}Y(h)^{2}}.$ Our results generalize, improve, and simplify previous works.
Publié le :
@article{DAS_2023_a8,
     author = {Harm Derksen and Emanuele Viola},
     title = {Quasirandom groups enjoy interleaved mixing},
     journal = {Discrete analysis},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2023_a8/}
}
TY  - JOUR
AU  - Harm Derksen
AU  - Emanuele Viola
TI  - Quasirandom groups enjoy interleaved mixing
JO  - Discrete analysis
PY  - 2023
UR  - http://geodesic.mathdoc.fr/item/DAS_2023_a8/
LA  - en
ID  - DAS_2023_a8
ER  - 
%0 Journal Article
%A Harm Derksen
%A Emanuele Viola
%T Quasirandom groups enjoy interleaved mixing
%J Discrete analysis
%D 2023
%U http://geodesic.mathdoc.fr/item/DAS_2023_a8/
%G en
%F DAS_2023_a8
Harm Derksen; Emanuele Viola. Quasirandom groups enjoy interleaved mixing. Discrete analysis (2023). http://geodesic.mathdoc.fr/item/DAS_2023_a8/