Quasirandom groups enjoy interleaved mixing
Discrete analysis (2023)
Cet article a éte moissonné depuis la source Scholastica
Let $G$ be a group such that any non-trivial representation has dimension at least $d$. Let $X=(X_{1},X_{2},\ldots,X_{t})$ and $Y=(Y_{1},Y_{2},\ldots,Y_{t})$ be distributions over $G^{t}$. Suppose that $X$ is independent from $Y$. We show that for any $g\in G$ we have $|\mathbb{P}[X_{1}Y_{1}X_{2}Y_{2}\cdots X_{t}Y_{t}=g]-1/|G||\le\frac{|G|^{2t-1}}{d^{t-1}}\sqrt{\mathbb{E}_{h\in G^{t}}X(h)^{2}}\sqrt{\mathbb{E}_{h\in G^{t}}Y(h)^{2}}.$ Our results generalize, improve, and simplify previous works.
@article{DAS_2023_a8,
author = {Harm Derksen and Emanuele Viola},
title = {Quasirandom groups enjoy interleaved mixing},
journal = {Discrete analysis},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2023_a8/}
}
Harm Derksen; Emanuele Viola. Quasirandom groups enjoy interleaved mixing. Discrete analysis (2023). http://geodesic.mathdoc.fr/item/DAS_2023_a8/