A Simple Combinatorial Proof of Szemerédi's Theorem via Three Levels of Infinities
Discrete analysis (2023) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We present a nonstandard simple elementary proof of Szemerédi's theorem by a straightforward induction with the help of three levels of infinities and four different elementary embeddings in a nonstandard universe.
Publié le :
@article{DAS_2023_a7,
     author = {Renling Jin},
     title = {A {Simple} {Combinatorial} {Proof} of {Szemer\'edi's} {Theorem} via {Three} {Levels} of {Infinities}},
     journal = {Discrete analysis},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2023_a7/}
}
TY  - JOUR
AU  - Renling Jin
TI  - A Simple Combinatorial Proof of Szemerédi's Theorem via Three Levels of Infinities
JO  - Discrete analysis
PY  - 2023
UR  - http://geodesic.mathdoc.fr/item/DAS_2023_a7/
LA  - en
ID  - DAS_2023_a7
ER  - 
%0 Journal Article
%A Renling Jin
%T A Simple Combinatorial Proof of Szemerédi's Theorem via Three Levels of Infinities
%J Discrete analysis
%D 2023
%U http://geodesic.mathdoc.fr/item/DAS_2023_a7/
%G en
%F DAS_2023_a7
Renling Jin. A Simple Combinatorial Proof of Szemerédi's Theorem via Three Levels of Infinities. Discrete analysis (2023). http://geodesic.mathdoc.fr/item/DAS_2023_a7/