An Improved Lower Bound for Sparse Reconstruction from Subsampled Walsh Matrices
Discrete analysis (2023)
Cet article a éte moissonné depuis la source Scholastica
We give a short argument that yields a new lower bound on the number of subsampled rows from a bounded, orthonormal matrix necessary to form a matrix with the restricted isometry property. We show that a matrix formed by uniformly subsampling rows of an $N \times N$ Walsh matrix contains a $K$-sparse vector in the kernel, unless the number of subsampled rows is $Ω(K \log K \log (N/K))$ -- our lower bound applies whenever $\min(K, N/K) > \log^C N$. Containing a sparse vector in the kernel precludes not only the restricted isometry property, but more generally the application of those matrices for uniform sparse recovery.
@article{DAS_2023_a19,
author = {Jaros{\l}aw B{\l}asiok and Patrick Lopatto and Kyle Luh and Jake Marcinek and Shravas Rao},
title = {An {Improved} {Lower} {Bound} for {Sparse} {Reconstruction} from {Subsampled} {Walsh} {Matrices}},
journal = {Discrete analysis},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2023_a19/}
}
TY - JOUR AU - Jarosław Błasiok AU - Patrick Lopatto AU - Kyle Luh AU - Jake Marcinek AU - Shravas Rao TI - An Improved Lower Bound for Sparse Reconstruction from Subsampled Walsh Matrices JO - Discrete analysis PY - 2023 UR - http://geodesic.mathdoc.fr/item/DAS_2023_a19/ LA - en ID - DAS_2023_a19 ER -
Jarosław Błasiok; Patrick Lopatto; Kyle Luh; Jake Marcinek; Shravas Rao. An Improved Lower Bound for Sparse Reconstruction from Subsampled Walsh Matrices. Discrete analysis (2023). http://geodesic.mathdoc.fr/item/DAS_2023_a19/