Spectral sets in $\mathbb{Z}_{p^2qr}$ tile
Discrete analysis (2023) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We prove the every spectral set in $\mathbb{Z}_{p^2qr}$ tiles, where $p$, $q$ and $r$ are primes. Combining this with a recent result of Malikiosis we obtain that Fuglede's conjecture holds for $\mathbb{Z}_{p^2qr}$.
Publié le :
@article{DAS_2023_a17,
     author = {G\'abor Somlai},
     title = {Spectral sets in $\mathbb{Z}_{p^2qr}$ tile},
     journal = {Discrete analysis},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2023_a17/}
}
TY  - JOUR
AU  - Gábor Somlai
TI  - Spectral sets in $\mathbb{Z}_{p^2qr}$ tile
JO  - Discrete analysis
PY  - 2023
UR  - http://geodesic.mathdoc.fr/item/DAS_2023_a17/
LA  - en
ID  - DAS_2023_a17
ER  - 
%0 Journal Article
%A Gábor Somlai
%T Spectral sets in $\mathbb{Z}_{p^2qr}$ tile
%J Discrete analysis
%D 2023
%U http://geodesic.mathdoc.fr/item/DAS_2023_a17/
%G en
%F DAS_2023_a17
Gábor Somlai. Spectral sets in $\mathbb{Z}_{p^2qr}$ tile. Discrete analysis (2023). http://geodesic.mathdoc.fr/item/DAS_2023_a17/