Elekes-Szabó for groups, and approximate subgroups in weak general position
Discrete analysis (2023) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We show that with a suitable weak notion of general position, the Elekes-Szabó condition on the group operation of a connected complex algebraic group characterises nilpotence of the group. Along the way, we prove a Mordell-Lang result for generic finitely generated subgroups of commutative complex algebraic groups.
Publié le :
@article{DAS_2023_a16,
     author = {Martin Bays and Jan Dobrowolski and Tingxiang Zou},
     title = {Elekes-Szab\'o for groups, and approximate subgroups in weak general position},
     journal = {Discrete analysis},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2023_a16/}
}
TY  - JOUR
AU  - Martin Bays
AU  - Jan Dobrowolski
AU  - Tingxiang Zou
TI  - Elekes-Szabó for groups, and approximate subgroups in weak general position
JO  - Discrete analysis
PY  - 2023
UR  - http://geodesic.mathdoc.fr/item/DAS_2023_a16/
LA  - en
ID  - DAS_2023_a16
ER  - 
%0 Journal Article
%A Martin Bays
%A Jan Dobrowolski
%A Tingxiang Zou
%T Elekes-Szabó for groups, and approximate subgroups in weak general position
%J Discrete analysis
%D 2023
%U http://geodesic.mathdoc.fr/item/DAS_2023_a16/
%G en
%F DAS_2023_a16
Martin Bays; Jan Dobrowolski; Tingxiang Zou. Elekes-Szabó for groups, and approximate subgroups in weak general position. Discrete analysis (2023). http://geodesic.mathdoc.fr/item/DAS_2023_a16/