Sharp L1 Inequalities for Sup-Convolution
Discrete analysis (2023) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

Given a compact convex domain $C\subset \mathbb{R}^k$ and bounded measurable functions $f_1,\ldots,f_n:C\to \mathbb{R}$, define the sup-convolution $(f_1\ast \ldots \ast f_n)(z)$ to be the supremum average value of $f_1(x_1),\ldots,f_n(x_n)$ over all $x_1,\ldots,x_n\in C$ which average to $z$. Continuing the study by Figalli and Jerison and the present authors of linear stability for the Brunn-Minkowski inequality with equal sets, for $k\le 3$ we find the optimal constants $c_{k,n}$ such that $$\int_C f^{\ast n}(x)-f(x) dx \ge c_{k,n}\int_C\text{co}(f)(x)-f(x) dx$$ where $\text{co}(f)$ is the upper convex hull of $f$. Additionally, we show $c_{k,n}=1-O(\frac{1}{n})$ for fixed $k$ and prove an analogous optimal inequality for two distinct functions. The key geometric insight is a decomposition of polytopal approximations of $C$ into hypersimplices according to the geometry of the set of points where $\text{co}(f)$ is close to $f$.
Publié le :
@article{DAS_2023_a15,
     author = {Peter van Hintum and Hunter Spink and Marius Tiba},
     title = {Sharp {L1} {Inequalities} for {Sup-Convolution}},
     journal = {Discrete analysis},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2023_a15/}
}
TY  - JOUR
AU  - Peter van Hintum
AU  - Hunter Spink
AU  - Marius Tiba
TI  - Sharp L1 Inequalities for Sup-Convolution
JO  - Discrete analysis
PY  - 2023
UR  - http://geodesic.mathdoc.fr/item/DAS_2023_a15/
LA  - en
ID  - DAS_2023_a15
ER  - 
%0 Journal Article
%A Peter van Hintum
%A Hunter Spink
%A Marius Tiba
%T Sharp L1 Inequalities for Sup-Convolution
%J Discrete analysis
%D 2023
%U http://geodesic.mathdoc.fr/item/DAS_2023_a15/
%G en
%F DAS_2023_a15
Peter van Hintum; Hunter Spink; Marius Tiba. Sharp L1 Inequalities for Sup-Convolution. Discrete analysis (2023). http://geodesic.mathdoc.fr/item/DAS_2023_a15/