Limits of Latin squares
Discrete analysis (2023) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We develop a limit theory of Latin squares, paralleling the recent limit theories of dense graphs and permutations. We introduce a notion of density, an appropriate version of the cut distance, and a space of limit objects - so-called Latinons. Key results of our theory are the compactness of the limit space and the equivalence of the topologies induced by the cut distance and the left-convergence. Last, using Keevash's recent results on combinatorial designs, we prove that each Latinon can be approximated by a finite Latin square.
Publié le :
@article{DAS_2023_a14,
     author = {Frederik Garbe and Robert Hancock and Jan Hladk\'y and Maryam Sharifzadeh},
     title = {Limits of {Latin} squares},
     journal = {Discrete analysis},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2023_a14/}
}
TY  - JOUR
AU  - Frederik Garbe
AU  - Robert Hancock
AU  - Jan Hladký
AU  - Maryam Sharifzadeh
TI  - Limits of Latin squares
JO  - Discrete analysis
PY  - 2023
UR  - http://geodesic.mathdoc.fr/item/DAS_2023_a14/
LA  - en
ID  - DAS_2023_a14
ER  - 
%0 Journal Article
%A Frederik Garbe
%A Robert Hancock
%A Jan Hladký
%A Maryam Sharifzadeh
%T Limits of Latin squares
%J Discrete analysis
%D 2023
%U http://geodesic.mathdoc.fr/item/DAS_2023_a14/
%G en
%F DAS_2023_a14
Frederik Garbe; Robert Hancock; Jan Hladký; Maryam Sharifzadeh. Limits of Latin squares. Discrete analysis (2023). http://geodesic.mathdoc.fr/item/DAS_2023_a14/