On product sets of arithmetic progressions
Discrete analysis (2023)
Cet article a éte moissonné depuis la source Scholastica
We prove that the size of the product set of any finite arithmetic progression $\mathcal{A}\subset \mathbb{Z}$ satisfies
\[|\mathcal A \cdot \mathcal A| \ge \frac{|\mathcal A|^2}{(\log |\mathcal A|)^{2θ+o(1)} } ,\] where $2θ=1-(1+\log\log 2)/(\log 2)$ is the constant appearing in the celebrated Erdős multiplication table problem. This confirms a conjecture of Elekes and Ruzsa from about two decades ago.
If instead $\mathcal{A}$ is relaxed to be a subset of a finite arithmetic progression in integers with positive constant density, we prove that \[|\mathcal A \cdot \mathcal A | \ge \frac{|\mathcal A|^{2}}{(\log |\mathcal A|)^{2\log 2- 1 + o(1)}}. \] This solves the typical case of another conjecture of Elekes and Ruzsa on the size of the product set of a set $\mathcal{A}$ whose sumset is of size $O(|\mathcal{A}|)$.
Our bounds are sharp up to the $o(1)$ term in the exponents. We further prove asymmetric extensions of the above results.
@article{DAS_2023_a12,
author = {Max Wenqiang Xu and Yunkun Zhou},
title = {On product sets of arithmetic progressions},
journal = {Discrete analysis},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2023_a12/}
}
Max Wenqiang Xu; Yunkun Zhou. On product sets of arithmetic progressions. Discrete analysis (2023). http://geodesic.mathdoc.fr/item/DAS_2023_a12/