Bi-parameter Potential theory and Carleson measures for the Dirichlet space on the bidisc
Discrete analysis (2023) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We characterize the Carleson measures for the Dirichlet space on the bidisc, hence also its multiplier space. Following Maz'ya and Stegenga, the characterization is given in terms of a capacitary condition. We develop the foundations of a bi-parameter potential theory on the bidisc and prove a Strong Capacitary Inequality. In order to do so, we have to overcome the obstacle that the Maximum Principle fails in the bi-parameter theory.
Publié le :
@article{DAS_2023_a0,
     author = {Nicola Arcozzi and Pavel Mozolyako and Karl-Mikael Perfekt and Giulia Sarfatti},
     title = {Bi-parameter {Potential} theory and {Carleson} measures for the {Dirichlet} space on the bidisc},
     journal = {Discrete analysis},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2023_a0/}
}
TY  - JOUR
AU  - Nicola Arcozzi
AU  - Pavel Mozolyako
AU  - Karl-Mikael Perfekt
AU  - Giulia Sarfatti
TI  - Bi-parameter Potential theory and Carleson measures for the Dirichlet space on the bidisc
JO  - Discrete analysis
PY  - 2023
UR  - http://geodesic.mathdoc.fr/item/DAS_2023_a0/
LA  - en
ID  - DAS_2023_a0
ER  - 
%0 Journal Article
%A Nicola Arcozzi
%A Pavel Mozolyako
%A Karl-Mikael Perfekt
%A Giulia Sarfatti
%T Bi-parameter Potential theory and Carleson measures for the Dirichlet space on the bidisc
%J Discrete analysis
%D 2023
%U http://geodesic.mathdoc.fr/item/DAS_2023_a0/
%G en
%F DAS_2023_a0
Nicola Arcozzi; Pavel Mozolyako; Karl-Mikael Perfekt; Giulia Sarfatti. Bi-parameter Potential theory and Carleson measures for the Dirichlet space on the bidisc. Discrete analysis (2023). http://geodesic.mathdoc.fr/item/DAS_2023_a0/