Bi-parameter Potential theory and Carleson measures for the Dirichlet space on the bidisc
Discrete analysis (2023)
Cet article a éte moissonné depuis la source Scholastica
We characterize the Carleson measures for the Dirichlet space on the bidisc, hence also its multiplier space. Following Maz'ya and Stegenga, the characterization is given in terms of a capacitary condition. We develop the foundations of a bi-parameter potential theory on the bidisc and prove a Strong Capacitary Inequality. In order to do so, we have to overcome the obstacle that the Maximum Principle fails in the bi-parameter theory.
@article{DAS_2023_a0,
author = {Nicola Arcozzi and Pavel Mozolyako and Karl-Mikael Perfekt and Giulia Sarfatti},
title = {Bi-parameter {Potential} theory and {Carleson} measures for the {Dirichlet} space on the bidisc},
journal = {Discrete analysis},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2023_a0/}
}
TY - JOUR AU - Nicola Arcozzi AU - Pavel Mozolyako AU - Karl-Mikael Perfekt AU - Giulia Sarfatti TI - Bi-parameter Potential theory and Carleson measures for the Dirichlet space on the bidisc JO - Discrete analysis PY - 2023 UR - http://geodesic.mathdoc.fr/item/DAS_2023_a0/ LA - en ID - DAS_2023_a0 ER -
Nicola Arcozzi; Pavel Mozolyako; Karl-Mikael Perfekt; Giulia Sarfatti. Bi-parameter Potential theory and Carleson measures for the Dirichlet space on the bidisc. Discrete analysis (2023). http://geodesic.mathdoc.fr/item/DAS_2023_a0/