Quantitative bounds for the $U^4$-inverse theorem over low characteristic finite fields
Discrete analysis (2022)
Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

This paper gives the first quantitative bounds for the inverse theorem for the Gowers $U^4$-norm over $\mathbb{F}_p^n$ when $p=2,3$. We build upon earlier work of Gowers and Milićević who solved the corresponding problem for $p\geq 5$. Our proof has two main steps: symmetrization and integration of low-characteristic trilinear forms. We are able to solve the integration problem for all $k$-linear forms, but the symmetrization problem we are only able to solve for trilinear forms. We pose several open problems about symmetrization of low-characteristic $k$-linear forms whose resolution, combined with recent work of Gowers and Milićević, would give quantitative bounds for the inverse theorem for the Gowers $U^{k+1}$-norm over $\mathbb{F}_p^n$ for all $k,p$.
Publié le :
@article{DAS_2022_a6,
     author = {Jonathan Tidor},
     title = {Quantitative bounds for the $U^4$-inverse theorem over low characteristic finite fields},
     journal = {Discrete analysis},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2022_a6/}
}
TY  - JOUR
AU  - Jonathan Tidor
TI  - Quantitative bounds for the $U^4$-inverse theorem over low characteristic finite fields
JO  - Discrete analysis
PY  - 2022
UR  - http://geodesic.mathdoc.fr/item/DAS_2022_a6/
LA  - en
ID  - DAS_2022_a6
ER  - 
%0 Journal Article
%A Jonathan Tidor
%T Quantitative bounds for the $U^4$-inverse theorem over low characteristic finite fields
%J Discrete analysis
%D 2022
%U http://geodesic.mathdoc.fr/item/DAS_2022_a6/
%G en
%F DAS_2022_a6
Jonathan Tidor. Quantitative bounds for the $U^4$-inverse theorem over low characteristic finite fields. Discrete analysis (2022). http://geodesic.mathdoc.fr/item/DAS_2022_a6/