Asymptotic distribution of traces of singular moduli
Discrete analysis (2022) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We determine the asymptotic behavior of twisted traces of singular moduli with a power-saving error term in both the discriminant and the order of the pole at $i\infty$. Using this asymptotic formula, we obtain an exact formula for these traces involving the class number and a finite sum involving the exponential function evaluated at CM points.
Publié le :
@article{DAS_2022_a19,
     author = {Nickolas Andersen and William Duke},
     title = {Asymptotic distribution of traces of singular moduli},
     journal = {Discrete analysis},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2022_a19/}
}
TY  - JOUR
AU  - Nickolas Andersen
AU  - William Duke
TI  - Asymptotic distribution of traces of singular moduli
JO  - Discrete analysis
PY  - 2022
UR  - http://geodesic.mathdoc.fr/item/DAS_2022_a19/
LA  - en
ID  - DAS_2022_a19
ER  - 
%0 Journal Article
%A Nickolas Andersen
%A William Duke
%T Asymptotic distribution of traces of singular moduli
%J Discrete analysis
%D 2022
%U http://geodesic.mathdoc.fr/item/DAS_2022_a19/
%G en
%F DAS_2022_a19
Nickolas Andersen; William Duke. Asymptotic distribution of traces of singular moduli. Discrete analysis (2022). http://geodesic.mathdoc.fr/item/DAS_2022_a19/