Abstract 3-Rigidity and Bivariate $C_2^1$-Splines II: Combinatorial Characterization
Discrete analysis (2022) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We showed in the first paper of this series that the generic $C_2^1$-cofactor matroid is the unique maximal abstract $3$-rigidity matroid. In this paper we obtain a combinatorial characterization of independence in this matroid. This solves the cofactor counterpart of the combinatorial characterization problem for the rigidity of generic 3-dimensional bar-joint frameworks. We use our characterization to verify that the counterparts of conjectures of Dress (on the rank function) and Lovász and Yemini (which suggested a sufficient connectivity condition for rigidity) hold for this matroid.
Publié le :
@article{DAS_2022_a16,
     author = {Katie Clinch and Bill Jackson and Shin-ichi Tanigawa},
     title = {Abstract {3-Rigidity} and {Bivariate} $C_2^1${-Splines} {II:} {Combinatorial} {Characterization}},
     journal = {Discrete analysis},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2022_a16/}
}
TY  - JOUR
AU  - Katie Clinch
AU  - Bill Jackson
AU  - Shin-ichi Tanigawa
TI  - Abstract 3-Rigidity and Bivariate $C_2^1$-Splines II: Combinatorial Characterization
JO  - Discrete analysis
PY  - 2022
UR  - http://geodesic.mathdoc.fr/item/DAS_2022_a16/
LA  - en
ID  - DAS_2022_a16
ER  - 
%0 Journal Article
%A Katie Clinch
%A Bill Jackson
%A Shin-ichi Tanigawa
%T Abstract 3-Rigidity and Bivariate $C_2^1$-Splines II: Combinatorial Characterization
%J Discrete analysis
%D 2022
%U http://geodesic.mathdoc.fr/item/DAS_2022_a16/
%G en
%F DAS_2022_a16
Katie Clinch; Bill Jackson; Shin-ichi Tanigawa. Abstract 3-Rigidity and Bivariate $C_2^1$-Splines II: Combinatorial Characterization. Discrete analysis (2022). http://geodesic.mathdoc.fr/item/DAS_2022_a16/