A characterization of high transitivity for groups acting on trees
Discrete analysis (2022)
Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We establish a sharp sufficient condition for groups acting on trees to be highly transitive when the action on the tree is minimal of general type. This gives new examples of highly transitive groups, including icc non-solvable Baumslag-Solitar groups, thus answering a question of Hull and Osin.
Publié le :
@article{DAS_2022_a12,
     author = {Pierre Fima and Fran\c{c}ois Le Ma{\^\i}tre and Soyoung Moon and Yves Stalder},
     title = {A characterization of high transitivity for groups acting on trees},
     journal = {Discrete analysis},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2022_a12/}
}
TY  - JOUR
AU  - Pierre Fima
AU  - François Le Maître
AU  - Soyoung Moon
AU  - Yves Stalder
TI  - A characterization of high transitivity for groups acting on trees
JO  - Discrete analysis
PY  - 2022
UR  - http://geodesic.mathdoc.fr/item/DAS_2022_a12/
LA  - en
ID  - DAS_2022_a12
ER  - 
%0 Journal Article
%A Pierre Fima
%A François Le Maître
%A Soyoung Moon
%A Yves Stalder
%T A characterization of high transitivity for groups acting on trees
%J Discrete analysis
%D 2022
%U http://geodesic.mathdoc.fr/item/DAS_2022_a12/
%G en
%F DAS_2022_a12
Pierre Fima; François Le Maître; Soyoung Moon; Yves Stalder. A characterization of high transitivity for groups acting on trees. Discrete analysis (2022). http://geodesic.mathdoc.fr/item/DAS_2022_a12/