Cycle type of random permutations: A toolkit
Discrete analysis (2022)
Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We prove a number of results, new and old, about the cycle type of a random permutation on S_n. Underlying our analysis is the idea that the number of cycles of size k is roughly Poisson distributed with parameter 1/k. In particular, we establish strong results about the distribution of the number of cycles whose lengths lie in a fixed but arbitrary set I. Our techniques are motivated by the theory of sieves in number theory.
Publié le :
@article{DAS_2022_a11,
     author = {Kevin Ford},
     title = {Cycle type of random permutations: {A} toolkit},
     journal = {Discrete analysis},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2022_a11/}
}
TY  - JOUR
AU  - Kevin Ford
TI  - Cycle type of random permutations: A toolkit
JO  - Discrete analysis
PY  - 2022
UR  - http://geodesic.mathdoc.fr/item/DAS_2022_a11/
LA  - en
ID  - DAS_2022_a11
ER  - 
%0 Journal Article
%A Kevin Ford
%T Cycle type of random permutations: A toolkit
%J Discrete analysis
%D 2022
%U http://geodesic.mathdoc.fr/item/DAS_2022_a11/
%G en
%F DAS_2022_a11
Kevin Ford. Cycle type of random permutations: A toolkit. Discrete analysis (2022). http://geodesic.mathdoc.fr/item/DAS_2022_a11/