On a conjecture of Gowers and Wolf
Discrete analysis (2022) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

Gowers and Wolf have conjectured that, given a set of linear forms $\{ψ_i\}_{i=1}^t$ each mapping $\mathbb{Z}^D$ to $\mathbb{Z}$, if $s$ is an integer such that the functions $ψ_1^{s+1},\ldots, ψ_t^{s+1}$ are linearly independent, then averages of the form $\mathbb{E}_{\boldsymbol{x}} \prod_{i=1}^t f(ψ_i(\boldsymbol{x}))$ may be controlled by the Gowers $U^{s+1}$-norm of $f$. We prove (a stronger version of) this conjecture.
Publié le :
@article{DAS_2022_a10,
     author = {Daniel Altman},
     title = {On a conjecture of {Gowers} and {Wolf}},
     journal = {Discrete analysis},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2022_a10/}
}
TY  - JOUR
AU  - Daniel Altman
TI  - On a conjecture of Gowers and Wolf
JO  - Discrete analysis
PY  - 2022
UR  - http://geodesic.mathdoc.fr/item/DAS_2022_a10/
LA  - en
ID  - DAS_2022_a10
ER  - 
%0 Journal Article
%A Daniel Altman
%T On a conjecture of Gowers and Wolf
%J Discrete analysis
%D 2022
%U http://geodesic.mathdoc.fr/item/DAS_2022_a10/
%G en
%F DAS_2022_a10
Daniel Altman. On a conjecture of Gowers and Wolf. Discrete analysis (2022). http://geodesic.mathdoc.fr/item/DAS_2022_a10/