On a conjecture of Gowers and Wolf
Discrete analysis (2022)
Cet article a éte moissonné depuis la source Scholastica
Gowers and Wolf have conjectured that, given a set of linear forms $\{ψ_i\}_{i=1}^t$ each mapping $\mathbb{Z}^D$ to $\mathbb{Z}$, if $s$ is an integer such that the functions $ψ_1^{s+1},\ldots, ψ_t^{s+1}$ are linearly independent, then averages of the form $\mathbb{E}_{\boldsymbol{x}} \prod_{i=1}^t f(ψ_i(\boldsymbol{x}))$ may be controlled by the Gowers $U^{s+1}$-norm of $f$. We prove (a stronger version of) this conjecture.
@article{DAS_2022_a10,
author = {Daniel Altman},
title = {On a conjecture of {Gowers} and {Wolf}},
journal = {Discrete analysis},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2022_a10/}
}
Daniel Altman. On a conjecture of Gowers and Wolf. Discrete analysis (2022). http://geodesic.mathdoc.fr/item/DAS_2022_a10/