Vanishing sums of roots of unity and the Favard length of self-similar product sets
Discrete analysis (2022) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We improve a special case of the Lam-Leung lower bound on the number of elements in a vanishing sum of $N$-th roots of unity. Using this result, we extend the Favard length estimates due to Bond, Łaba, and Volberg to a new class of rational product Cantor sets in $\mathbb{R}^2$.
Publié le :
@article{DAS_2022_a1,
     author = {Izabella Laba and Caleb Marshall},
     title = {Vanishing sums of roots of unity and the {Favard} length of self-similar product sets},
     journal = {Discrete analysis},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2022_a1/}
}
TY  - JOUR
AU  - Izabella Laba
AU  - Caleb Marshall
TI  - Vanishing sums of roots of unity and the Favard length of self-similar product sets
JO  - Discrete analysis
PY  - 2022
UR  - http://geodesic.mathdoc.fr/item/DAS_2022_a1/
LA  - en
ID  - DAS_2022_a1
ER  - 
%0 Journal Article
%A Izabella Laba
%A Caleb Marshall
%T Vanishing sums of roots of unity and the Favard length of self-similar product sets
%J Discrete analysis
%D 2022
%U http://geodesic.mathdoc.fr/item/DAS_2022_a1/
%G en
%F DAS_2022_a1
Izabella Laba; Caleb Marshall. Vanishing sums of roots of unity and the Favard length of self-similar product sets. Discrete analysis (2022). http://geodesic.mathdoc.fr/item/DAS_2022_a1/