Vanishing sums of roots of unity and the Favard length of self-similar product sets
Discrete analysis (2022)
Cet article a éte moissonné depuis la source Scholastica
We improve a special case of the Lam-Leung lower bound on the number of elements in a vanishing sum of $N$-th roots of unity. Using this result, we extend the Favard length estimates due to Bond, Łaba, and Volberg to a new class of rational product Cantor sets in $\mathbb{R}^2$.
@article{DAS_2022_a1,
author = {Izabella Laba and Caleb Marshall},
title = {Vanishing sums of roots of unity and the {Favard} length of self-similar product sets},
journal = {Discrete analysis},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2022_a1/}
}
Izabella Laba; Caleb Marshall. Vanishing sums of roots of unity and the Favard length of self-similar product sets. Discrete analysis (2022). http://geodesic.mathdoc.fr/item/DAS_2022_a1/