Relationships between the number of inputs and other complexity measures of Boolean functions
Discrete analysis (2022) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We generalize and extend the ideas in a recent paper of Chiarelli, Hatami and Saks to prove new bounds on the number of relevant variables for boolean functions in terms of a variety of complexity measures. Our approach unifies and refines all previously known bounds of this type. We also improve Nisan and Szegedy's well-known block sensitivity vs. degree inequality by a constant factor, thereby improving Huang's recent proof of the sensitivity conjecture by the same constant.
Publié le :
@article{DAS_2022_a0,
     author = {Jake Wellens},
     title = {Relationships between the number of inputs and other complexity measures of {Boolean} functions},
     journal = {Discrete analysis},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2022_a0/}
}
TY  - JOUR
AU  - Jake Wellens
TI  - Relationships between the number of inputs and other complexity measures of Boolean functions
JO  - Discrete analysis
PY  - 2022
UR  - http://geodesic.mathdoc.fr/item/DAS_2022_a0/
LA  - en
ID  - DAS_2022_a0
ER  - 
%0 Journal Article
%A Jake Wellens
%T Relationships between the number of inputs and other complexity measures of Boolean functions
%J Discrete analysis
%D 2022
%U http://geodesic.mathdoc.fr/item/DAS_2022_a0/
%G en
%F DAS_2022_a0
Jake Wellens. Relationships between the number of inputs and other complexity measures of Boolean functions. Discrete analysis (2022). http://geodesic.mathdoc.fr/item/DAS_2022_a0/