Multiple recurrence and large intersections for abelian group actions
Discrete analysis (2021) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

The purpose of this paper is to study the phenomenon of large intersections in the framework of multiple recurrence for measure-preserving actions of countable abelian groups. Among other things, we show: (1) If $G$ is a countable abelian group and $\varphi, ψ: G \to G$ are homomorphisms such that $\varphi(G)$, $ψ(G)$, and $(ψ- \varphi)(G)$ have finite index in $G$, then for every ergodic measure-preserving system $(X, \mathcal{B}, μ, (T_g)_{g \in G})$, every set $A \in \mathcal{B}$, and every $\varepsilon > 0$, the set $\{g \in G : μ(A \cap T_{\varphi(g)}^{-1}A \cap T_{ψ(g)}^{-1}A) > μ(A)^3 - \varepsilon\}$ is syndetic. (2) If $G$ is a countable abelian group and $r,s \in \mathbb{Z}$ are integers such that $rG$, $sG$, and $(r \pm s)G$ have finite index in $G$, then for every ergodic measure-preserving system $(X, \mathcal{B}, μ, (T_g)_{g \in G})$, every set $A \in \mathcal{B}$, and every $\varepsilon > 0$, the set $\{g \in G : μ(A \cap T_{rg}^{-1}A \cap T_{sg}^{-1}A \cap T_{(r+s)g}^{-1}A) > μ(A)^4 - \varepsilon\}$ is syndetic. In particular, these extend and generalize results of Bergelson, Host, and Kra concerning $\mathbb{Z}$-actions and of Bergelson, Tao, and Ziegler concerning $\mathbb{F}_p^{\infty}$-actions. Using an ergodic version of the Furstenberg correspondence principle, we obtain new combinatorial applications. We also discuss numerous examples shedding light on the necessity of the various hypotheses above. Our results lead to a number of interesting questions and conjectures, formulated in the introduction and at the end of the paper.
Publié le :
@article{DAS_2021_a8,
     author = {Ethan Ackelsberg and Vitaly Bergelson and Andrew Best},
     title = {Multiple recurrence and large intersections for abelian group actions},
     journal = {Discrete analysis},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2021_a8/}
}
TY  - JOUR
AU  - Ethan Ackelsberg
AU  - Vitaly Bergelson
AU  - Andrew Best
TI  - Multiple recurrence and large intersections for abelian group actions
JO  - Discrete analysis
PY  - 2021
UR  - http://geodesic.mathdoc.fr/item/DAS_2021_a8/
LA  - en
ID  - DAS_2021_a8
ER  - 
%0 Journal Article
%A Ethan Ackelsberg
%A Vitaly Bergelson
%A Andrew Best
%T Multiple recurrence and large intersections for abelian group actions
%J Discrete analysis
%D 2021
%U http://geodesic.mathdoc.fr/item/DAS_2021_a8/
%G en
%F DAS_2021_a8
Ethan Ackelsberg; Vitaly Bergelson; Andrew Best. Multiple recurrence and large intersections for abelian group actions. Discrete analysis (2021). http://geodesic.mathdoc.fr/item/DAS_2021_a8/