Universality of the minimum modulus for random trigonometric polynomials
Discrete analysis (2021)
Cet article a éte moissonné depuis la source Scholastica
It has been shown in a recent work by Yakir-Zeitouni that the minimum modulus of random trigonometric polynomials with Gaussian coefficients has a limiting exponential distribution. We show this is a universal phenomenon. Our approach relates the joint distribution of small values of the polynomial at a fixed number $m$ of points on the circle to the distribution of a certain random walk in a $4m$-dimensional phase space. Under Diophantine approximation conditions on the angles, we obtain strong small ball estimates and a local central limit theorem for the distribution of the walk.
@article{DAS_2021_a6,
author = {Nicholas A. Cook and Hoi H. Nguyen},
title = {Universality of the minimum modulus for random trigonometric polynomials},
journal = {Discrete analysis},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2021_a6/}
}
Nicholas A. Cook; Hoi H. Nguyen. Universality of the minimum modulus for random trigonometric polynomials. Discrete analysis (2021). http://geodesic.mathdoc.fr/item/DAS_2021_a6/