A decomposition of multicorrelation sequences for commuting transformations along primes
Discrete analysis (2021)
We study multicorrelation sequences arising from systems with commuting transformations. Our main result is a refinement of a decomposition result of Frantzikinakis and it states that any multicorrelation sequences for commuting transformations can be decomposed, for every $ε>0$, as the sum of a nilsequence $φ(n)$ and a sequence $ω(n)$ satisfying $\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N |ω(n)|$ and $\lim_{N\to\infty}\frac{1}{|\mathbb{P}\cap [N]|}\sum_{p\in \mathbb{P}\cap [N]} |ω(p)|$.
@article{DAS_2021_a23,
author = {Anh N. Le and Joel Moreira and Florian K. Richter},
title = {A decomposition of multicorrelation sequences for commuting transformations along primes},
journal = {Discrete analysis},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2021_a23/}
}
Anh N. Le; Joel Moreira; Florian K. Richter. A decomposition of multicorrelation sequences for commuting transformations along primes. Discrete analysis (2021). http://geodesic.mathdoc.fr/item/DAS_2021_a23/