A decomposition of multicorrelation sequences for commuting transformations along primes
Discrete analysis (2021)
Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We study multicorrelation sequences arising from systems with commuting transformations. Our main result is a refinement of a decomposition result of Frantzikinakis and it states that any multicorrelation sequences for commuting transformations can be decomposed, for every $ε>0$, as the sum of a nilsequence $φ(n)$ and a sequence $ω(n)$ satisfying $\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N |ω(n)|$ and $\lim_{N\to\infty}\frac{1}{|\mathbb{P}\cap [N]|}\sum_{p\in \mathbb{P}\cap [N]} |ω(p)|$.
Publié le :
@article{DAS_2021_a23,
     author = {Anh N. Le and Joel Moreira and Florian K. Richter},
     title = {A decomposition of multicorrelation sequences for commuting transformations along primes},
     journal = {Discrete analysis},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2021_a23/}
}
TY  - JOUR
AU  - Anh N. Le
AU  - Joel Moreira
AU  - Florian K. Richter
TI  - A decomposition of multicorrelation sequences for commuting transformations along primes
JO  - Discrete analysis
PY  - 2021
UR  - http://geodesic.mathdoc.fr/item/DAS_2021_a23/
LA  - en
ID  - DAS_2021_a23
ER  - 
%0 Journal Article
%A Anh N. Le
%A Joel Moreira
%A Florian K. Richter
%T A decomposition of multicorrelation sequences for commuting transformations along primes
%J Discrete analysis
%D 2021
%U http://geodesic.mathdoc.fr/item/DAS_2021_a23/
%G en
%F DAS_2021_a23
Anh N. Le; Joel Moreira; Florian K. Richter. A decomposition of multicorrelation sequences for commuting transformations along primes. Discrete analysis (2021). http://geodesic.mathdoc.fr/item/DAS_2021_a23/