The sixth moment of the Riemann zeta function and ternary additive divisor sums
Discrete analysis (2021) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

Hardy and Littlewood initiated the study of the $2k$-th moments of the Riemann zeta function on the critical line. In 1918 Hardy and Littlewood established an asymptotic formula for the second moment and in 1926 Ingham established an asymptotic formula for the fourth moment. Since then no other moments have been asymptotically evaluated. In this article we study the sixth moment of the zeta function on the critical line. We show that a conjectural formula for a certain family of ternary additive divisor sums implies an asymptotic formula with power savings error term for the sixth moment of the Riemann zeta function on the critical line. This provides a rigorous proof for a heuristic argument of Conrey and Gonek. Furthermore, this gives some evidence towards a conjecture of Conrey, Keating, Farmer, Rubinstein, and Snaith on shifted moments of the Riemann zeta function. In addition, this improves on a theorem of Ivic, who obtained an upper bound for the the sixth moment of the zeta function, based on the assumption of a conjectural formula for correlation sums of the triple divisor function.
Publié le :
@article{DAS_2021_a22,
     author = {Nathan Ng},
     title = {The sixth moment of the {Riemann} zeta function and ternary additive divisor sums},
     journal = {Discrete analysis},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2021_a22/}
}
TY  - JOUR
AU  - Nathan Ng
TI  - The sixth moment of the Riemann zeta function and ternary additive divisor sums
JO  - Discrete analysis
PY  - 2021
UR  - http://geodesic.mathdoc.fr/item/DAS_2021_a22/
LA  - en
ID  - DAS_2021_a22
ER  - 
%0 Journal Article
%A Nathan Ng
%T The sixth moment of the Riemann zeta function and ternary additive divisor sums
%J Discrete analysis
%D 2021
%U http://geodesic.mathdoc.fr/item/DAS_2021_a22/
%G en
%F DAS_2021_a22
Nathan Ng. The sixth moment of the Riemann zeta function and ternary additive divisor sums. Discrete analysis (2021). http://geodesic.mathdoc.fr/item/DAS_2021_a22/