Irreducibility of random polynomials of bounded degree
Discrete analysis (2021) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

It is known that random monic integral polynomials of bounded degree $d$ and integral coefficients distributed uniformly and independently in $[-H,H]$ are irreducible over $\mathbb{Z}$ with probability tending to $1$ as $H\to \infty$. In this paper, we give a general criterion for guaranteeing the same conclusion under much more general coefficient distributions, allowing them to be nonuniformly and dependently distributed over arbitrary sets.
Publié le :
@article{DAS_2021_a20,
     author = {Huy Tuan Pham and Max Wenqiang Xu},
     title = {Irreducibility of random polynomials of bounded degree},
     journal = {Discrete analysis},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2021_a20/}
}
TY  - JOUR
AU  - Huy Tuan Pham
AU  - Max Wenqiang Xu
TI  - Irreducibility of random polynomials of bounded degree
JO  - Discrete analysis
PY  - 2021
UR  - http://geodesic.mathdoc.fr/item/DAS_2021_a20/
LA  - en
ID  - DAS_2021_a20
ER  - 
%0 Journal Article
%A Huy Tuan Pham
%A Max Wenqiang Xu
%T Irreducibility of random polynomials of bounded degree
%J Discrete analysis
%D 2021
%U http://geodesic.mathdoc.fr/item/DAS_2021_a20/
%G en
%F DAS_2021_a20
Huy Tuan Pham; Max Wenqiang Xu. Irreducibility of random polynomials of bounded degree. Discrete analysis (2021). http://geodesic.mathdoc.fr/item/DAS_2021_a20/