Sorting probability for large Young diagrams
Discrete analysis (2021)
Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

For a finite poset $P=(X,\prec)$, let $\mathcal{L}_P$ denote the set of linear extensions of $P$. The sorting probability $δ(P)$ is defined as \[δ(P) \, := \, \min_{x,y\in X} \, \bigl| \mathbf{P} \, [L(x)\leq L(y) ] \ - \ \mathbf{P} \, [L(y)\leq L(x) ] \bigr|\,, \] where $L \in \mathcal{L}_P$ is a uniform linear extension of $P$. We give asymptotic upper bounds on sorting probabilities for posets associated with large Young diagrams and large skew Young diagrams, with bounded number of rows.
Publié le :
@article{DAS_2021_a2,
     author = {Swee Hong Chan and Igor Pak and Greta Panova},
     title = {Sorting probability for large {Young} diagrams},
     journal = {Discrete analysis},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2021_a2/}
}
TY  - JOUR
AU  - Swee Hong Chan
AU  - Igor Pak
AU  - Greta Panova
TI  - Sorting probability for large Young diagrams
JO  - Discrete analysis
PY  - 2021
UR  - http://geodesic.mathdoc.fr/item/DAS_2021_a2/
LA  - en
ID  - DAS_2021_a2
ER  - 
%0 Journal Article
%A Swee Hong Chan
%A Igor Pak
%A Greta Panova
%T Sorting probability for large Young diagrams
%J Discrete analysis
%D 2021
%U http://geodesic.mathdoc.fr/item/DAS_2021_a2/
%G en
%F DAS_2021_a2
Swee Hong Chan; Igor Pak; Greta Panova. Sorting probability for large Young diagrams. Discrete analysis (2021). http://geodesic.mathdoc.fr/item/DAS_2021_a2/