Patterns without a popular difference
Discrete analysis (2021)
Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

Which finite sets $P \subseteq \mathbb{Z}^r$ with $|P| \ge 3$ have the following property: for every $A \subseteq [N]^r$, there is some nonzero integer $d$ such that $A$ contains $(α^{|P|} - o(1))N^r$ translates of $d \cdot P = \{d p : p \in P\}$, where $α= |A|/N^r$? Green showed that all 3-point $P \subseteq \mathbb{Z}$ have the above property. Green and Tao showed that 4-point sets of the form $P = \{a, a+b, a+c, a+b+c\} \subseteq \mathbb{Z}$ also have the property. We show that no other sets have the above property. Furthermore, for various $P$, we provide new upper bounds on the number of translates of $d \cdot P$ that one can guarantee to find.
Publié le :
@article{DAS_2021_a19,
     author = {Ashwin Sah and Mehtaab Sawhney and Yufei Zhao},
     title = {Patterns without a popular difference},
     journal = {Discrete analysis},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2021_a19/}
}
TY  - JOUR
AU  - Ashwin Sah
AU  - Mehtaab Sawhney
AU  - Yufei Zhao
TI  - Patterns without a popular difference
JO  - Discrete analysis
PY  - 2021
UR  - http://geodesic.mathdoc.fr/item/DAS_2021_a19/
LA  - en
ID  - DAS_2021_a19
ER  - 
%0 Journal Article
%A Ashwin Sah
%A Mehtaab Sawhney
%A Yufei Zhao
%T Patterns without a popular difference
%J Discrete analysis
%D 2021
%U http://geodesic.mathdoc.fr/item/DAS_2021_a19/
%G en
%F DAS_2021_a19
Ashwin Sah; Mehtaab Sawhney; Yufei Zhao. Patterns without a popular difference. Discrete analysis (2021). http://geodesic.mathdoc.fr/item/DAS_2021_a19/