Automorphisms of shift spaces and the Higman--Thompson groups: the one-sided case
Discrete analysis (2021) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

Let $1 \le r n$ be integers. We give a proof that the group $\mathop{\mathrm{Aut}}({X_{n}^{\mathbb{N}}, σ_{n}})$ of automorphisms of the one-sided shift on $n$ letters embeds naturally as a subgroup $\mathcal{H}_{n}$ of the outer automorphism group $\mathop{\mathrm{Out}}({G_{n,r}})$ of the Higman-Thompson group $G_{n,r}$. From this, we can represent the elements of $\mathop{\mathrm{Aut}}({X_{n}^{\mathbb{N}}, σ_{n}})$ by finite state non-initial transducers admitting a very strong synchronizing condition. Let $H \in \mathcal{H}_{n}$ and write $|H|$ for the number of states of the minimal transducer representing $H$. We show that $H$ can be written as a product of at most $|H|$ torsion elements. This result strengthens a similar result of Boyle, Franks and Kitchens, where the decomposition involves more complex torsion elements and also does not support practical \textit{a priori} estimates of the length of the resulting product. We also explore the number of foldings of de Bruijn graphs and give a counting result for these for word length $2$ and alphabet size $n$. Finally, we offer new proofs of some known results about $\mathop{\mathrm{Aut}}({X_{n}^{\mathbb{N}}, σ_{n}})$.
Publié le :
@article{DAS_2021_a12,
     author = {Collin Bleak and Peter J. Cameron and Feyishayo Olukoya},
     title = {Automorphisms of shift spaces and the {Higman--Thompson} groups: the one-sided case},
     journal = {Discrete analysis},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2021_a12/}
}
TY  - JOUR
AU  - Collin Bleak
AU  - Peter J. Cameron
AU  - Feyishayo Olukoya
TI  - Automorphisms of shift spaces and the Higman--Thompson groups: the one-sided case
JO  - Discrete analysis
PY  - 2021
UR  - http://geodesic.mathdoc.fr/item/DAS_2021_a12/
LA  - en
ID  - DAS_2021_a12
ER  - 
%0 Journal Article
%A Collin Bleak
%A Peter J. Cameron
%A Feyishayo Olukoya
%T Automorphisms of shift spaces and the Higman--Thompson groups: the one-sided case
%J Discrete analysis
%D 2021
%U http://geodesic.mathdoc.fr/item/DAS_2021_a12/
%G en
%F DAS_2021_a12
Collin Bleak; Peter J. Cameron; Feyishayo Olukoya. Automorphisms of shift spaces and the Higman--Thompson groups: the one-sided case. Discrete analysis (2021). http://geodesic.mathdoc.fr/item/DAS_2021_a12/