Random multilinear maps and the Erdős box problem
Discrete analysis (2021)
Cet article a éte moissonné depuis la source Scholastica
By using random multilinear maps, we provide new lower bounds for the Erdős box problem, the problem of estimating the extremal number of the complete $d$-partite $d$-uniform hypergraph with two vertices in each part, thereby improving on work of Gunderson, Rödl and Sidorenko.
@article{DAS_2021_a10,
author = {David Conlon and Cosmin Pohoata and Dmitriy Zakharov},
title = {Random multilinear maps and the {Erd\H{o}s} box problem},
journal = {Discrete analysis},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2021_a10/}
}
David Conlon; Cosmin Pohoata; Dmitriy Zakharov. Random multilinear maps and the Erdős box problem. Discrete analysis (2021). http://geodesic.mathdoc.fr/item/DAS_2021_a10/