Random multilinear maps and the Erdős box problem
Discrete analysis (2021) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

By using random multilinear maps, we provide new lower bounds for the Erdős box problem, the problem of estimating the extremal number of the complete $d$-partite $d$-uniform hypergraph with two vertices in each part, thereby improving on work of Gunderson, Rödl and Sidorenko.
Publié le :
@article{DAS_2021_a10,
     author = {David Conlon and Cosmin Pohoata and Dmitriy Zakharov},
     title = {Random multilinear maps and the {Erd\H{o}s} box problem},
     journal = {Discrete analysis},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2021_a10/}
}
TY  - JOUR
AU  - David Conlon
AU  - Cosmin Pohoata
AU  - Dmitriy Zakharov
TI  - Random multilinear maps and the Erdős box problem
JO  - Discrete analysis
PY  - 2021
UR  - http://geodesic.mathdoc.fr/item/DAS_2021_a10/
LA  - en
ID  - DAS_2021_a10
ER  - 
%0 Journal Article
%A David Conlon
%A Cosmin Pohoata
%A Dmitriy Zakharov
%T Random multilinear maps and the Erdős box problem
%J Discrete analysis
%D 2021
%U http://geodesic.mathdoc.fr/item/DAS_2021_a10/
%G en
%F DAS_2021_a10
David Conlon; Cosmin Pohoata; Dmitriy Zakharov. Random multilinear maps and the Erdős box problem. Discrete analysis (2021). http://geodesic.mathdoc.fr/item/DAS_2021_a10/