Sharp density bounds on the finite field Kakeya problem
Discrete analysis (2021) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

A Kakeya set in $\mathbb{F}_q^n$ is a set containing a line in every direction. We show that every Kakeya set in $\mathbb{F}_q^n$ has density at least $1/2^{n-1}$, matching the construction by Dvir, Kopparty, Saraf and Sudan.
Publié le :
@article{DAS_2021_a0,
     author = {Boris Bukh and Ting-Wei Chao},
     title = {Sharp density bounds on the finite field {Kakeya} problem},
     journal = {Discrete analysis},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2021_a0/}
}
TY  - JOUR
AU  - Boris Bukh
AU  - Ting-Wei Chao
TI  - Sharp density bounds on the finite field Kakeya problem
JO  - Discrete analysis
PY  - 2021
UR  - http://geodesic.mathdoc.fr/item/DAS_2021_a0/
LA  - en
ID  - DAS_2021_a0
ER  - 
%0 Journal Article
%A Boris Bukh
%A Ting-Wei Chao
%T Sharp density bounds on the finite field Kakeya problem
%J Discrete analysis
%D 2021
%U http://geodesic.mathdoc.fr/item/DAS_2021_a0/
%G en
%F DAS_2021_a0
Boris Bukh; Ting-Wei Chao. Sharp density bounds on the finite field Kakeya problem. Discrete analysis (2021). http://geodesic.mathdoc.fr/item/DAS_2021_a0/