Sharp density bounds on the finite field Kakeya problem
Discrete analysis (2021)
Cet article a éte moissonné depuis la source Scholastica
A Kakeya set in $\mathbb{F}_q^n$ is a set containing a line in every direction. We show that every Kakeya set in $\mathbb{F}_q^n$ has density at least $1/2^{n-1}$, matching the construction by Dvir, Kopparty, Saraf and Sudan.
@article{DAS_2021_a0,
author = {Boris Bukh and Ting-Wei Chao},
title = {Sharp density bounds on the finite field {Kakeya} problem},
journal = {Discrete analysis},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2021_a0/}
}
Boris Bukh; Ting-Wei Chao. Sharp density bounds on the finite field Kakeya problem. Discrete analysis (2021). http://geodesic.mathdoc.fr/item/DAS_2021_a0/