An efficient container lemma
Discrete analysis (2020) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We prove a new, efficient version of the hypergraph container theorems that is suited for hypergraphs with large uniformities. The main novelty is a refined approach to constructing containers that employs simple ideas from high-dimensional convex geometry. The existence of smaller families of containers for independent sets in such hypergraphs, which is guaranteed by the new theorem, allows us to improve upon the best currently known bounds for several problems in extremal graph theory, discrete geometry, and Ramsey theory.
Publié le :
@article{DAS_2020_a3,
     author = {J\'ozsef Balogh and Wojciech Samotij},
     title = {An efficient container lemma},
     journal = {Discrete analysis},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2020_a3/}
}
TY  - JOUR
AU  - József Balogh
AU  - Wojciech Samotij
TI  - An efficient container lemma
JO  - Discrete analysis
PY  - 2020
UR  - http://geodesic.mathdoc.fr/item/DAS_2020_a3/
LA  - en
ID  - DAS_2020_a3
ER  - 
%0 Journal Article
%A József Balogh
%A Wojciech Samotij
%T An efficient container lemma
%J Discrete analysis
%D 2020
%U http://geodesic.mathdoc.fr/item/DAS_2020_a3/
%G en
%F DAS_2020_a3
József Balogh; Wojciech Samotij. An efficient container lemma. Discrete analysis (2020). http://geodesic.mathdoc.fr/item/DAS_2020_a3/