Approximate Lattices and Meyer Sets in Nilpotent Lie Groups
Discrete analysis (2020) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We show that uniform approximate lattices in nilpotent Lie groups are subsets of model sets. This extends a theorem due to Yves Meyer about quasicrystals in Euclidean spaces. To do so we study relatively dense subsets of simply connected nilpotent Lie groups and their logarithms. We then deduce a simple criterion for the existence of an approximate lattice in a given nilpotent Lie group.
Publié le :
@article{DAS_2020_a19,
     author = {Simon Machado},
     title = {Approximate {Lattices} and {Meyer} {Sets} in {Nilpotent} {Lie} {Groups}},
     journal = {Discrete analysis},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2020_a19/}
}
TY  - JOUR
AU  - Simon Machado
TI  - Approximate Lattices and Meyer Sets in Nilpotent Lie Groups
JO  - Discrete analysis
PY  - 2020
UR  - http://geodesic.mathdoc.fr/item/DAS_2020_a19/
LA  - en
ID  - DAS_2020_a19
ER  - 
%0 Journal Article
%A Simon Machado
%T Approximate Lattices and Meyer Sets in Nilpotent Lie Groups
%J Discrete analysis
%D 2020
%U http://geodesic.mathdoc.fr/item/DAS_2020_a19/
%G en
%F DAS_2020_a19
Simon Machado. Approximate Lattices and Meyer Sets in Nilpotent Lie Groups. Discrete analysis (2020). http://geodesic.mathdoc.fr/item/DAS_2020_a19/