Coding for Sunflowers
Discrete analysis (2020) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

A sunflower is a family of sets that have the same pairwise intersections. We simplify a recent result of Alweiss, Lovett, Wu and Zhang that gives an upper bound on the size of every family of sets of size $k$ that does not contain a sunflower. We show how to use the converse of Shannon's noiseless coding theorem to give a cleaner proof of their result.
Publié le :
@article{DAS_2020_a18,
     author = {Anup Rao},
     title = {Coding for {Sunflowers}},
     journal = {Discrete analysis},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2020_a18/}
}
TY  - JOUR
AU  - Anup Rao
TI  - Coding for Sunflowers
JO  - Discrete analysis
PY  - 2020
UR  - http://geodesic.mathdoc.fr/item/DAS_2020_a18/
LA  - en
ID  - DAS_2020_a18
ER  - 
%0 Journal Article
%A Anup Rao
%T Coding for Sunflowers
%J Discrete analysis
%D 2020
%U http://geodesic.mathdoc.fr/item/DAS_2020_a18/
%G en
%F DAS_2020_a18
Anup Rao. Coding for Sunflowers. Discrete analysis (2020). http://geodesic.mathdoc.fr/item/DAS_2020_a18/