Decomposition of random walk measures on the one-dimensional torus
Discrete analysis (2020) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

The main result of this paper is a decomposition theorem for a measure on the one-dimensional torus. Given a sufficiently large subset $S$ of the positive integers, an arbitrary measure on the torus is decomposed as the sum of two measures. The first one $μ_1$ has the property that the random walk with initial distribution $μ_1$ evolved by the action of $S$ equidistributes very fast. The second measure $μ_2$ in the decomposition is concentrated on very small neighborhoods of a small number of points.
Publié le :
@article{DAS_2020_a17,
     author = {Tom Gilat},
     title = {Decomposition of random walk measures on the one-dimensional torus},
     journal = {Discrete analysis},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2020_a17/}
}
TY  - JOUR
AU  - Tom Gilat
TI  - Decomposition of random walk measures on the one-dimensional torus
JO  - Discrete analysis
PY  - 2020
UR  - http://geodesic.mathdoc.fr/item/DAS_2020_a17/
LA  - en
ID  - DAS_2020_a17
ER  - 
%0 Journal Article
%A Tom Gilat
%T Decomposition of random walk measures on the one-dimensional torus
%J Discrete analysis
%D 2020
%U http://geodesic.mathdoc.fr/item/DAS_2020_a17/
%G en
%F DAS_2020_a17
Tom Gilat. Decomposition of random walk measures on the one-dimensional torus. Discrete analysis (2020). http://geodesic.mathdoc.fr/item/DAS_2020_a17/