Finitely forcible graphons with an almost arbitrary structure
Discrete analysis (2020)
Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

Graphons are analytic objects representing convergent sequences of large graphs. A graphon is said to be finitely forcible if it is determined by finitely many subgraph densities, i.e., if the asymptotic structure of graphs represented by such a graphon depends only on finitely many density constraints. Such graphons appear in various scenarios, particularly in extremal combinatorics. Lovasz and Szegedy conjectured that all finitely forcible graphons possess a simple structure. This was disproved in a strong sense by Cooper, Kral and Martins, who showed that any graphon is a subgraphon of a finitely forcible graphon. We strenghten this result by showing for every $\varepsilon>0$ that any graphon spans a $1-\varepsilon$ proportion of a finitely forcible graphon.
Publié le :
@article{DAS_2020_a14,
     author = {Daniel Kral and L\'aszl\'o Mikl\'os Lov\'asz and Jonathan A. Noel and Jakub Sosnovec},
     title = {Finitely forcible graphons with an almost arbitrary structure},
     journal = {Discrete analysis},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2020_a14/}
}
TY  - JOUR
AU  - Daniel Kral
AU  - László Miklós Lovász
AU  - Jonathan A. Noel
AU  - Jakub Sosnovec
TI  - Finitely forcible graphons with an almost arbitrary structure
JO  - Discrete analysis
PY  - 2020
UR  - http://geodesic.mathdoc.fr/item/DAS_2020_a14/
LA  - en
ID  - DAS_2020_a14
ER  - 
%0 Journal Article
%A Daniel Kral
%A László Miklós Lovász
%A Jonathan A. Noel
%A Jakub Sosnovec
%T Finitely forcible graphons with an almost arbitrary structure
%J Discrete analysis
%D 2020
%U http://geodesic.mathdoc.fr/item/DAS_2020_a14/
%G en
%F DAS_2020_a14
Daniel Kral; László Miklós Lovász; Jonathan A. Noel; Jakub Sosnovec. Finitely forcible graphons with an almost arbitrary structure. Discrete analysis (2020). http://geodesic.mathdoc.fr/item/DAS_2020_a14/