On the integrality gap of the maximum-cut semidefinite programming relaxation in fixed dimension
Discrete analysis (2020)
Cet article a éte moissonné depuis la source Scholastica
We describe a factor-revealing convex optimization problem for the integrality gap of the maximum-cut semidefinite programming relaxation: for each $n \geq 2$ we present a convex optimization problem whose optimal value is the largest possible ratio between the value of an optimal rank-$n$ solution to the relaxation and the value of an optimal cut. This problem is then used to compute lower bounds for the integrality gap.
@article{DAS_2020_a10,
author = {Fernando M\'ario de Oliveira Filho and Frank Vallentin},
title = {On the integrality gap of the maximum-cut semidefinite programming relaxation in fixed dimension},
journal = {Discrete analysis},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2020_a10/}
}
Fernando Mário de Oliveira Filho; Frank Vallentin. On the integrality gap of the maximum-cut semidefinite programming relaxation in fixed dimension. Discrete analysis (2020). http://geodesic.mathdoc.fr/item/DAS_2020_a10/