Floating and Illumination Bodies for Polytopes: Duality Results
Discrete analysis (2019) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We consider the question how well a floating body can be approximated by the polar of the illumination body of the polar. We establish precise convergence results in the case of centrally symmetric polytopes. This leads to a new affine invariant which is related to the cone measure of the polytope.
Publié le :
@article{DAS_2019_a9,
     author = {Olaf Mordhorst and Elisabeth M. Werner},
     title = {Floating and {Illumination} {Bodies} for {Polytopes:} {Duality} {Results}},
     journal = {Discrete analysis},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2019_a9/}
}
TY  - JOUR
AU  - Olaf Mordhorst
AU  - Elisabeth M. Werner
TI  - Floating and Illumination Bodies for Polytopes: Duality Results
JO  - Discrete analysis
PY  - 2019
UR  - http://geodesic.mathdoc.fr/item/DAS_2019_a9/
LA  - en
ID  - DAS_2019_a9
ER  - 
%0 Journal Article
%A Olaf Mordhorst
%A Elisabeth M. Werner
%T Floating and Illumination Bodies for Polytopes: Duality Results
%J Discrete analysis
%D 2019
%U http://geodesic.mathdoc.fr/item/DAS_2019_a9/
%G en
%F DAS_2019_a9
Olaf Mordhorst; Elisabeth M. Werner. Floating and Illumination Bodies for Polytopes: Duality Results. Discrete analysis (2019). http://geodesic.mathdoc.fr/item/DAS_2019_a9/