Fuglede's conjecture holds on cyclic groups $\mathbb{Z}_{pqr}$
Discrete analysis (2019) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

Fuglede's spectral set conjecture states that a subset $Ω$ of a locally compact abelian group $G$ tiles the group by translation if and only if there exists a subset of continuous group characters which is an orthogonal basis of $L^2(Ω)$. We prove that Fuglede's conjecture holds on cyclic groups $\mathbb{Z}_{pqr}$ with $p,q,r$ distinct primes.
Publié le :
@article{DAS_2019_a6,
     author = {Ruxi Shi},
     title = {Fuglede's conjecture holds on cyclic groups $\mathbb{Z}_{pqr}$},
     journal = {Discrete analysis},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2019_a6/}
}
TY  - JOUR
AU  - Ruxi Shi
TI  - Fuglede's conjecture holds on cyclic groups $\mathbb{Z}_{pqr}$
JO  - Discrete analysis
PY  - 2019
UR  - http://geodesic.mathdoc.fr/item/DAS_2019_a6/
LA  - en
ID  - DAS_2019_a6
ER  - 
%0 Journal Article
%A Ruxi Shi
%T Fuglede's conjecture holds on cyclic groups $\mathbb{Z}_{pqr}$
%J Discrete analysis
%D 2019
%U http://geodesic.mathdoc.fr/item/DAS_2019_a6/
%G en
%F DAS_2019_a6
Ruxi Shi. Fuglede's conjecture holds on cyclic groups $\mathbb{Z}_{pqr}$. Discrete analysis (2019). http://geodesic.mathdoc.fr/item/DAS_2019_a6/