Exponential sums with reducible polynomials
Discrete analysis (2019) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

Hooley proved that if $f\in \Bbb Z [X]$ is irreducible of degree $\ge 2$, then the fractions $\{ r/n\}$, $0$ with $f(r)\equiv 0\pmod n$, are uniformly distributed in $(0,1)$. In this paper we study such problems for reducible polynomials of degree $2$ and $3$ and for finite products of linear factors. In particular, we establish asymptotic formulas for exponential sums over these normalized roots.
Publié le :
@article{DAS_2019_a5,
     author = {C\'ecile Dartyge and Greg Martin},
     title = {Exponential sums with reducible polynomials},
     journal = {Discrete analysis},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2019_a5/}
}
TY  - JOUR
AU  - Cécile Dartyge
AU  - Greg Martin
TI  - Exponential sums with reducible polynomials
JO  - Discrete analysis
PY  - 2019
UR  - http://geodesic.mathdoc.fr/item/DAS_2019_a5/
LA  - en
ID  - DAS_2019_a5
ER  - 
%0 Journal Article
%A Cécile Dartyge
%A Greg Martin
%T Exponential sums with reducible polynomials
%J Discrete analysis
%D 2019
%U http://geodesic.mathdoc.fr/item/DAS_2019_a5/
%G en
%F DAS_2019_a5
Cécile Dartyge; Greg Martin. Exponential sums with reducible polynomials. Discrete analysis (2019). http://geodesic.mathdoc.fr/item/DAS_2019_a5/