The sharp square function estimate with matrix weight
Discrete analysis (2019) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We prove the matrix $A_2$ conjecture for the dyadic square function, that is, a norm estimate of the matrix weighted square function, where the focus is on the sharp linear dependence on the matrix $A_2$ constant in the estimate. Moreover, we give a mixed estimate in terms of $A_2$ and $A_{\infty}$ constants. Key is a sparse domination of a process inspired by the integrated form of the matrix--weighted square function.
Publié le :
@article{DAS_2019_a18,
     author = {Tuomas Hyt\"onen and Stefanie Petermichl and Alexander Volberg},
     title = {The sharp square function estimate with matrix weight},
     journal = {Discrete analysis},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2019_a18/}
}
TY  - JOUR
AU  - Tuomas Hytönen
AU  - Stefanie Petermichl
AU  - Alexander Volberg
TI  - The sharp square function estimate with matrix weight
JO  - Discrete analysis
PY  - 2019
UR  - http://geodesic.mathdoc.fr/item/DAS_2019_a18/
LA  - en
ID  - DAS_2019_a18
ER  - 
%0 Journal Article
%A Tuomas Hytönen
%A Stefanie Petermichl
%A Alexander Volberg
%T The sharp square function estimate with matrix weight
%J Discrete analysis
%D 2019
%U http://geodesic.mathdoc.fr/item/DAS_2019_a18/
%G en
%F DAS_2019_a18
Tuomas Hytönen; Stefanie Petermichl; Alexander Volberg. The sharp square function estimate with matrix weight. Discrete analysis (2019). http://geodesic.mathdoc.fr/item/DAS_2019_a18/