The sharp square function estimate with matrix weight
Discrete analysis (2019)
Cet article a éte moissonné depuis la source Scholastica
We prove the matrix $A_2$ conjecture for the dyadic square function, that is, a norm estimate of the matrix weighted square function, where the focus is on the sharp linear dependence on the matrix $A_2$ constant in the estimate. Moreover, we give a mixed estimate in terms of $A_2$ and $A_{\infty}$ constants. Key is a sparse domination of a process inspired by the integrated form of the matrix--weighted square function.
@article{DAS_2019_a18,
author = {Tuomas Hyt\"onen and Stefanie Petermichl and Alexander Volberg},
title = {The sharp square function estimate with matrix weight},
journal = {Discrete analysis},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2019_a18/}
}
Tuomas Hytönen; Stefanie Petermichl; Alexander Volberg. The sharp square function estimate with matrix weight. Discrete analysis (2019). http://geodesic.mathdoc.fr/item/DAS_2019_a18/