On the Lehmer conjecture and counting in finite fields
Discrete analysis (2019) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We give a reformulation of the Lehmer conjecture about algebraic integers in terms of a simple counting problem modulo p.
Publié le :
@article{DAS_2019_a15,
     author = {Emmanuel Breuillard and P\'eter P. Varj\'u},
     title = {On the {Lehmer} conjecture and counting in finite fields},
     journal = {Discrete analysis},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2019_a15/}
}
TY  - JOUR
AU  - Emmanuel Breuillard
AU  - Péter P. Varjú
TI  - On the Lehmer conjecture and counting in finite fields
JO  - Discrete analysis
PY  - 2019
UR  - http://geodesic.mathdoc.fr/item/DAS_2019_a15/
LA  - en
ID  - DAS_2019_a15
ER  - 
%0 Journal Article
%A Emmanuel Breuillard
%A Péter P. Varjú
%T On the Lehmer conjecture and counting in finite fields
%J Discrete analysis
%D 2019
%U http://geodesic.mathdoc.fr/item/DAS_2019_a15/
%G en
%F DAS_2019_a15
Emmanuel Breuillard; Péter P. Varjú. On the Lehmer conjecture and counting in finite fields. Discrete analysis (2019). http://geodesic.mathdoc.fr/item/DAS_2019_a15/